Algebraische Geometrie
aus Wikipedia, der freien Enzyklopädie
Die algebraische Geometrie ist ein Teilgebiet der Mathematik, der, wie der Name bereits andeutet, die abstrakte Algebra, insbesondere das Studium von kommutativen Ringen, mit der Geometrie verknüpft. Sie lässt sich kurz als das Studium der Nullstellengebilde algebraischer Gleichungen beschreiben.
In der algebraischen Geometrie werden geometrische Strukturen als Menge von Nullstellen einer Menge von Polynomen definiert. Zum Beispiel lässt sich die zwei-dimensionale Kugel im drei-dimensionalen Euklidischen Raum R3 als die Menge aller Punkte (x, y, z) definieren, für die gilt:
- x2 + y2 + z2 -1 = 0.
Ein "gekippter" Kreis im R3 kann definiert werden als die Menge aller Punkte (x, y, z), die folgende zwei Polynombedingungen erfüllen:
- x2 + y2 + z2 -1 = 0,
- x + y + z = 0.
Ist allgemein K ein Körper und S eine Menge von Polynomen in n Variablen mit Koeffizienten in K, dann ist V(S) definiert als diejenige Teilmenge von Kn, die aus den gemeinsamen Nullstellen der Polynome in S besteht. Eine Menge dieser Form heißt eine affine Varietät. Die affinen Varietäten definieren eine Topologie auf Kn, die so genannte Zariski-Topologie. Als eine Konsequenz des Hilbertschen Basissatzes kann jede Varietät durch nur endlich viele Polynomgleichungen definiert werden. Eine Varietät heißt irreduzibel, wenn sie nicht die Vereinigung zweier echter abgeschlossener Teilmengen ist. Es stellt sich heraus, dass eine Varietät genau dann irreduzibel ist, wenn die Polynome, die sie definieren, ein Primideal des Polynomrings erzeugen. Die Korrespondenz zwischen Varietäten und Idealen ist ein zentrales Thema der algebraischen Geometrie. Man kann geradezu ein Wörterbuch zwischen geometrischen Begriffen, wie Varietät, irreduzibel, usw. und algebraischen Begriffen, wie Ideal, Primideal usw. angeben.
Zu jeder Varietät V kann man einen kommutativen Ring assoziieren, den so genannten Koordinatenring. Er besteht aus allen Polynomfunktionen, die auf der Varietät definiert sind. Die Primideale dieses Rings stehen in Korrespondenz zu den irreduziblen Untervarietäten von V; wenn K algebraisch abgeschlossen ist, was üblicherweise angenommen wird, dann entsprechen die Punkte von V den maximalen Idealen des Koordinatenrings (Hilberts Nullstellensatz).
Statt in dem affinen Raum Kn zu arbeiten, geht man typischerweise zum projektiven Raum über. Der Hauptvorteil besteht dabei darin, dass sich die Anzahl der Schnittpunkte zweier Varietäten dann leicht mit Hilfe des Satzes von Bézout bestimmen lässt.
In der modernen Sicht wird die Korrespondenz zwischen Varietäten und ihren Koordinatenringen umgekehrt: Man geht von einem beliebigen kommutativen Ring aus und definiert eine dazugehörende Varietät mithilfe seiner Primideale. Aus den Primidealen wird zunächst ein topologischer Raum konstruiert, das Spektrum des Rings. In der allgemeinsten Formulierung führt dies zu Alexander Grothendiecks Schemata.
Eine wichtige Klasse von Varietäten sind die abelschen Varietäten. Dies sind projektive Varietäten, deren Punkte eine abelsche Gruppe bilden. Die typischen Beispiele hierfür sind elliptische Kurven, die eine wichtige Rolle im Beweis von Fermats letztem Satz spielen. Ein weiteres wichtiges Anwendungsgebiet ist die Kryptographie mit elliptischen Kurven.
Während in der algebraischen Geometrie lange Zeit vor allem abstrakte Aussagen über die Struktur von Varietäten getroffen worden sind, wurden jüngst algorithmische Techniken entwickelt, die das effiziente Rechnen mit Polynomidealen erlauben. Das wichtigste Hilfsmittel sind die Gröbnerbasen, die in den meisten heutigen Computer Algebra Systemen implementiert sind.
Die algebraische Geometrie wurde in weiten Teilen von den italienischen Geometern des frühen zwanzigsten Jahrhundert entwickelt. Ihre Arbeit war tiefgreifend, stand aber nicht auf einer ausreichend strengen Basis. Die kommutative Algebra (als das Studium kommutativer Ringe und ihrer Ideale) wurde von David Hilbert, Emmy Noether und anderen ebenfalls zu Beginn des zwanzigsten Jahrhunderts entwickelt. Dabei hatten sie bereits die geometrischen Anwendungen im Hinterkopf. In den 1930ern und 1940ern stellte André Weil fest, dass die algebraische Geometrie auf eine strenge Basis gestellt werden musste und entwickelte eine entsprechende Theorie. In den 1950ern und 1960ern überarbeiteten Jean-Pierre Serre und speziell Alexander Grothendieck diese Grundlagen unter der Verwendung von Garben und später unter der Verwendung der Schemata.
[Bearbeiten] Liste affiner Varietäten
- Kegelschnitt
- Nullstellenmengen Polynome dritter Ordnung
- Nullstellenmengen Polynome vierter Ordnung
Mathematical Subject Classification: 14-XX