Web Analytics

See also ebooksgratis.com: no banners, no cookies, totally FREE.

CLASSICISTRANIERI HOME PAGE - YOUTUBE CHANNEL
Privacy Policy Cookie Policy Terms and Conditions
Graham-szám - Wikipédia

Graham-szám

A Wikipédiából, a szabad lexikonból.

A Graham-szám, amely Ronald Graham amerikai matematikusról kapta nevét, arról nevezetes, hogy valószínűleg a legnagyobb olyan szám, ami matematikai bizonyításban valalaha is előfordult. Jóval nagyobb annál, hogy a szokásosan használt tízes számrendszerben - akár még normálalak használatával is - le lehessen írni, így lejegyzéséhez, definiálásához külön jelölésrendszerre van szükség. Ennek ellenére elemi számelméleti módszerekkel tetszőlegesen sok számjegye kiszámítható (igaz, „hátulról”, a kisebbektől a nagyobb helyiértékek felé haladva). Graham számának utolsó 10 számjegye …2464195387.

[szerkesztés] A Graham-probléma

A Graham-szám a következő probléma megoldásakor merült fel, mely probléma egyébként a kombinatorikai, pontosabban diszkrét matematikai jellegű, Ramsey-elméletnek nevezett terület körébe tartozik:

Képzeljünk el egy n-dimenziós hiperkockát, és kössük össze minden csúcspárját, hogy egy 2n csúcsú teljes gráfot kapjunk. Ezt követően színezzük ki e gráfnak minden élét csupán két színnel (pl. pirossal és kékkel). Mi n legkisebb olyan értéke (azaz legalább hány dimenziós kell legyen a hiperkocka), amelyiknél minden ilyen színezés szükségképpen tartalmaz egy olyan teljes részgráfot, mely egyszínű (tehát minden éle piros, vagy minden éle kék), és még 4, egy síkban fekvő csúcsa is van?

Habár a probléma megoldása még várat magára, de az bizonyított, hogy a Graham-szám olyan szám, melynél a fenti n érték biztosan kisebb kell hogy legyen, és ennél jobb felső becslést n-re még nem találtak.

Az 1989-es, Penrose Tiles to Trapdoor Ciphers című könyvében (ISBN 0883855216) Martin Gardner azt írta, hogy „A Ramsey-elmélet szakértőinek véleménye szerint a tényleges Ramsey-szám erre a problémára valószínűleg 6”, s ebből az következik, hogy a Graham-szám feltehetően a legrosszabb felső becslés, amit valaha is egy ismeretlen mennyiség értékének nagyságára tettek. Újabban (2003-ban) azonban az Indianai Állami Egyetem munkatársa, Geoff Exoo kimutatta, hogy ennek a számnak legalább 11-nek kell lennie, és bizonyította is, hogy nagyobb annál.

Úgy tartják, hogy a Graham-szám a legnagyobb olyan szám, amit a gyakorlatban valaha is alkalmaztak. Nagyobb a Moser-számnál is (ez szintén egy óriási szám).

[szerkesztés] A Graham-szám definíciója

Graham száma a 65. az alábbi sorozatban, ahol minden tag a következőhöz szükséges Knuth-nyilak száma:

4,\ 3\uparrow\uparrow\uparrow\uparrow3,\ 3\uparrow\cdots\uparrow3,\ 3\uparrow\cdots\uparrow3,\ \ldots

Ennek megfelelően határozzuk meg az f(n) = hyper(3,n+2,3) = 3→3→n függvényt, majd a függvényhatványok segítségével adódik G=f64(4).

Magát G-t, a Graham-számot nem lehet a Conway-féle láncoltnyíl-jelöléssel tömören kifejezni, de 3\rightarrow 3\rightarrow 64\rightarrow 2 < G < 3\rightarrow 3\rightarrow 65\rightarrow 2, lásd a Graham-számra vonatkozó részeket a Conway-féle láncoltnyíl-művelet c. szócikkben.

[szerkesztés] Külső hivatkozások

Static Wikipedia (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2007 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2006 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu

Static Wikipedia February 2008 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu