Scala di Planck
Da Wikipedia, l'enciclopedia libera.
In fisica, la scala di Planck è la scala di riferimento che definisce il limite di applicabilità delle leggi fisiche attuali (Meccanica quantica e relatività). Per essere calcolata esplicitamente deve essere riferita a una grandezza fisica precisa. Ad esempio può essere riferita a una lunghezza, in questo caso abbiamo la lunghezza di Planck. Può essere riferita a una energia e abbiamo l'energia di Planck. Idem per le altre grandezze fisiche.
Tutte le grandezze di Planck possono essere calcolate in modo semplice dalla lunghezza di Planck sfruttando proprietà dimensionali. Ad esempio per calcolare l'energia di Planck scriviamo
dove Ep è l' energia di Planck, è la costante di Planck, c la velocità della luce nel vuoto e lp la lunghezza di Planck.
[modifica] Calcolo della distanza di Planck
Possiamo legare la misura di una distanza con la lunghezza di De Broglie di una particella sonda. Questa a sua volta può essere facilmente legata all'energia fornitagli
dove λ è la lunghezza di De Broglie della particella. Pertanto più aumentiamo la precisione con cui misuriamo una distanza, più aumentiamo la concentrazione di energia in una porzione di spazio. Aumentando, tuttavia, l'energia presente in un volume di spazio, è possibile, come conseguenza della teoria della relatività generale, che che si formi un buco nero.
Un buco nero è un oggetto, la cui la forza di gravità é talmente forte, da piegare lo spazio su sé stesso. A causa di questo tutto quello che entra in un buco nero non ne può più uscire. Si avrà quindi una perdita dell'informazione da parte del universo esterno. Possiamo quindi ottenere una scala di lunghezza, chiedendoci qual'è la distanza più piccola che riusciamo a misurare senza perdere informazione. Un oggetto diventa un buco nero quando la sua estensione spaziale si riduce oltre quello che si chiama il suo raggio di Schwarzschild. Il raggio di Schwarzschild per un oggetto a simmetria sferica vale
dove M è la massa dell'oggetto, c é la velocità della luce G0 é la costante di gravitazione universale
Ora a causa della relatività sappiamo che la massa di un oggetto nel suo sitema di riferimento si può esprimere come M = E / c2, che a sua volta, usando la relazione di De Broglie, si scrivere
Poiché λ è la lunghezza di De Broglie, che rappresenta l'ordine di grandezza di lunghezza con cui possiamo localizzare un oggetto e il raggio di Schwarzschild è la distanza con cui possiamo localizzare un buco nero, allora possiamo scrivere Sostituendo nella condizione di Swartschild e considerando che sotto quella distanza perdiamo informazione otteniamo
Quando Δx satura la diseguaglianza, otteniamo quella che si chiama lunghezza di Planck e corrisponde a 10 − 33 cm.
[modifica] Voci correlate