Project Gutenberg
Contents Listing Alphabetical by Author:
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z Unknown Other
Contents Listing Alphabetical by Title:
# A B C D E F G H I J K L M N O P Q R S T U V W Y Z Other

Amazon - Audible - Barnes and Noble - Everand - Kobo - Storytel 

See also ebooksgratis.com: no banners, no cookies, totally FREE.

CLASSICISTRANIERI HOME PAGE - YOUTUBE CHANNEL
Privacy Policy Cookie Policy Terms and Conditions
Funkcja wykładnicza - Wikipedia, wolna encyklopedia

Funkcja wykładnicza

Z Wikipedii

Funkcja wykładniczafunkcja postaci:

f(x)=a^x\quad gdzie a>0\quad.

Niektórzy autorzy wymagają, aby podstawa a funkcji wykładniczej była różna od 1.

[edytuj] Własności

  • Dla a > 1 funkcja wykładnicza o podstawie a jest rosnąca, dla 0<a<1\quad malejąca. Jeśli \quad a=1 to fukcja f(x) = ax jest stała.
  • Pochodna funkcji wykładniczej to:
(a^x)'=\lim_{\Delta x\to 0}\frac{a^{x+\Delta x}-a^x}{\Delta x}=\lim_{\Delta x\to 0}a^x\frac{a^{\Delta x}-1}{\Delta x}=a^x \lim_{\Delta x\to 0}\frac{a^{\Delta x}-1}{\Delta x}=a^x \ln a

(patrz dowód w logarytm naturalny)

Czyli w szczególności dla a=e\quad mamy

(e^x)'=e^x\quad
  • Funkcja wykładnicza o podstawie a > 1 jest (przy argumencie dążącym do +\infty) asymptotycznie większa niż funkcja wielomianowa, mniejsza zaś niż silnia.

[edytuj] Funkcja eksponens

Szczególnym przypadkiem funkcji wykładniczej jest tzw. eksponens czyli funkcja wykładnicza o podstawie równej e (czyli podstawie logarytmu naturalnego). Inne oznaczenie: exp(x).

Cechą funkcji f(x)=e^x\quad jest to, że jej pochodna jest równa jej samej. Eksponens jako funkcję analityczną na mocy twierdzenia Taylora można rozwinąć w szereg potęgowy:  \sum_{n=0}^\infty \frac{x^n}{n!} .

Wykres funkcji y=e^x\quad:

[edytuj] Zobacz też

Static Wikipedia (no images) - November 2006

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - be - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - closed_zh_tw - co - cr - cs - csb - cu - cv - cy - da - de - diq - dv - dz - ee - el - eml - en - eo - es - et - eu - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gd - gl - glk - gn - got - gu - gv - ha - haw - he - hi - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mg - mh - mi - mk - ml - mn - mo - mr - ms - mt - mus - my - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - rm - rmy - rn - ro - roa_rup - roa_tara - ru - ru_sib - rw - sa - sc - scn - sco - sd - se - searchcom - sg - sh - si - simple - sk - sl - sm - sn - so - sq - sr - ss - st - su - sv - sw - ta - te - test - tet - tg - th - ti - tk - tl - tlh - tn - to - tokipona - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu