Project Gutenberg
Contents Listing Alphabetical by Author:
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z Unknown Other
Contents Listing Alphabetical by Title:
# A B C D E F G H I J K L M N O P Q R S T U V W Y Z Other

Amazon - Audible - Barnes and Noble - Everand - Kobo - Storytel 

See also ebooksgratis.com: no banners, no cookies, totally FREE.

CLASSICISTRANIERI HOME PAGE - YOUTUBE CHANNEL
Privacy Policy Cookie Policy Terms and Conditions
Sortowanie kubełkowe - Wikipedia, wolna encyklopedia

Sortowanie kubełkowe

Z Wikipedii

Sortowanie kubełkowe (ang. bucket sort) to jeden z algorytmów sortowania. Jest on najczęściej stosowany, gdy liczby w zadanym przedziale są rozłożone jednostajnie, ma on wówczas złożoność Θ(n). W przypadku ogólnym pesymistyczna złożoność obliczeniowa tego algorytmu wynosi O(n²).

Pomysł takiego sortowania podali po raz pierwszy w roku 1956 E. J. Issac i R. C. Singleton.

[edytuj] Sposób działania

  1. Podziel zadany przedział liczb na n podprzedziałów (kubełków) o równej długości.
  2. Przypisz liczby z sortowanej tablicy do odpowiednich kubełków.
  3. Sortuj liczby w niepustych kubełkach.
  4. Wypisz po kolei zawartość niepustych kubełków.

Zazwyczaj przyjmuje się, że sortowane liczby należą do przedziału od 0 do 1. Jeśli tak nie jest, to można podzielić każdą z nich, przez największą możliwą (jeśli znany jest przedział) lub wyznaczoną. Należy tu jednak zwrócić uwagę, że wyznaczanie największej możliwej liczby w tablicy m-elementowej ma złożoność obliczeniową O(m).

[edytuj] Pseudokod

function bucket-sort(array, n) is
  buckets ← new array of n empty lists
  for i = 0 to (length(array)-1) do
    insert array[i] into buckets[msbits(array[i], k)]
  for i = 0 to n - 1 do
    next-sort(buckets[i])
  return the concatenation of buckets[0], ..., buckets[n-1]

[edytuj] Literatura

  • Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, "Wprowadzenie do algorytmów", WNT 2001

Static Wikipedia (no images) - November 2006

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - be - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - closed_zh_tw - co - cr - cs - csb - cu - cv - cy - da - de - diq - dv - dz - ee - el - eml - en - eo - es - et - eu - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gd - gl - glk - gn - got - gu - gv - ha - haw - he - hi - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mg - mh - mi - mk - ml - mn - mo - mr - ms - mt - mus - my - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - rm - rmy - rn - ro - roa_rup - roa_tara - ru - ru_sib - rw - sa - sc - scn - sco - sd - se - searchcom - sg - sh - si - simple - sk - sl - sm - sn - so - sq - sr - ss - st - su - sv - sw - ta - te - test - tet - tg - th - ti - tk - tl - tlh - tn - to - tokipona - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu