Web Analytics

See also ebooksgratis.com: no banners, no cookies, totally FREE.

CLASSICISTRANIERI HOME PAGE - YOUTUBE CHANNEL
Privacy Policy Cookie Policy Terms and Conditions
Borel-Moore homology - Wikipedia, the free encyclopedia

Borel-Moore homology

From Wikipedia, the free encyclopedia

In mathematics, Borel-Moore homology or homology with closed support is a homology theory for locally compact spaces.

For compact spaces, the Borel-Moore homology coincide with the usual singular homology, but for non-compact spaces, it usually gives homology groups with better properties. The theory was developed by (and is named after) Armand Borel and Calvin Moore.

Contents

[edit] Definition

There are several ways to define Borel-Moore homology. They all coincide for spaces \ X that are homotopy equivalent to a finite CW complex and admit a closed embedding into a smooth manifold \ M such that \ X is a retract of an open neighborhood of itself in \ M.

[edit] Definition via locally finite chains

Let \ T be a triangulation of \ X. Denote by \ C_i ^T ((X)) the vector space of formal (infinite) sums

\xi = \sum _{\sigma \in T^{(i)} } \xi _{\sigma } \sigma.

Note that for each element

\ \xi \in C((X)) _i ^T,

its support,

\ |\xi | = \bigcup _{\xi _{\sigma}\neq 0}\sigma,

is closed. The support is compact if and only if \ \xi is a finite linear combination of simplices.

The space

\ C_i ((X))

of i-chains with closed support is defined to be the direct limit of

\ C_i ^T ((X))

under refinements of \ T. The boundary map of simplicial homology extends to a boundary map

\ \partial :C_i((X))\to C_{i-1}((X))

and it is easy to see that the sequence

\dots \to C_{i+1} ((X)) \to C_i ((X)) \to C_{i-1} ((X)) \to \dots

is a chain complex. The Borel-Moore homology of X is defined to be the homology of this chain complex. Concretely,

H^{BM} _i (X) =Ker (\partial :C_i ((X)) \to C_{i-1} ((X)) )/ Im (\partial :C_{i+1} ((X)) \to C_i ((X)) )

[edit] Definition via compactifications

Let \ \bar{X} be a compactification of \ X such that the pair

\ (\bar{X} ,X)

is a CW-pair. For example, one may take the one point compactification of \ X. Then

\ H^{BM}_i(X)=H_i(\bar{X} , \bar{X} \setminus X),

where in the right hand side, usual relative homology is meant.

[edit] Definition via Poincaré duality

Let \ X \subset M be a closed embedding of \ X in a smooth manifold of dimension m, such that \ X is a retract of an open neighborhood of itself. Then

\ H^{BM}_i(X)= H^{m-i}(M,M\setminus X),

where in the right hand side, usual relative cohomology is meant.

[edit] Definition via the dualizing complex

Let

\ \mathbb{D} _X

be the dualizing complex of \ \ X. Then

\  H^{BM}_i (X)=H^{-i} (X,\mathbb{D} _X),

where in the right hand side, hypercohomology is meant.

[edit] Properties

\ H^{BM}_i(\mathbb{R} ^n )

vanishes for \ i\neq n and equals \ \mathbb{R} for \ i=n.

  • Borel-Moore homology is a covariant functor with respect to proper maps. Suppose \ f:X\to Y is a proper map. Then \ f induces a continuous map \  \bar{f} :(\bar{X} , \bar{X} \setminus X )\to (\bar {Y} , \bar{Y} \setminus Y) where \bar{X}=X\cup \{ \infty \} , \bar{Y}=Y\cup \{ \infty \} are the one point compactifications. Using the definition of Borel-Moore homology via compactification, there is a map \ f_*:H^{BM}_* (X)\to H^{BM}_* (Y).
  • If \ F \subset X is a closed set and \ U=X\setminus F is its complement, then there is a long exact sequence

\dots \to H^{BM}_i (F) \to H^{BM}_i (X) \to H^{BM}_i (U) \to H^{BM}_{i-1} (F) \to \dots .

  • One of the main reasons to use Borel-Moore homology is that for every smooth orientable manifold \ M , there is a fundamental class \ [M]\in H^{BM}_{top}(M). This is just the sum over all top dimensional simplices in a specific triangulation. If \ M is a complex variety, one can discard the smoothness assumption: in this case the set of smooth points \ M^{reg} \subset M has complement of (real) codimension 2 and by the long exact sequence above the top dimensional homologies of \ M and \ M^{reg} are canonically isomorphic. In this case, define the fundamental class of \ M to be the fundamental class of \ M^{reg}.

Static Wikipedia (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2007 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2006 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu

Static Wikipedia February 2008 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu