Web Analytics

See also ebooksgratis.com: no banners, no cookies, totally FREE.

CLASSICISTRANIERI HOME PAGE - YOUTUBE CHANNEL
Privacy Policy Cookie Policy Terms and Conditions
Mersenne prime - Wikipedia, the free encyclopedia

Mersenne prime

From Wikipedia, the free encyclopedia

In mathematics, a Mersenne number is a number that is one less than a power of two.

Mn = 2n − 1.

A Mersenne prime is a Mersenne number that is a prime number. It is necessary for n to be prime for 2^n-1 to be prime, but the converse is not true. Many mathematicians prefer the definition that n has to be a prime number.

For example, 31 = 25 − 1, and 5 is a prime number, so 31 is a Mersenne number; and 31 is also a Mersenne prime because it is a prime number. But the Mersenne number 2047 = 211 − 1 is not a prime because it is divisible by 89 and 23. And 24 -1 = 15 can be shown to be composite because 4 is not prime.

Throughout modern times, the largest known prime number has very often been a Mersenne prime. Most sources restrict the term Mersenne number to where n is prime, as all Mersenne primes must be of this form as seen below.

Mersenne primes have a close connection to perfect numbers, which are numbers equal to the sum of their proper divisors. Historically, the study of Mersenne primes was motivated by this connection; in the 4th century BC Euclid demonstrated that if M is a Mersenne prime then M(M+1)/2 is a perfect number. In the 18th century, Leonhard Euler proved that all even perfect numbers have this form. No odd perfect numbers are known, and it is suspected that none exist (any that do have to belong to a significant number of special forms).

It is currently unknown whether there is an infinite number of Mersenne primes.

Contents

[edit] Searching for Mersenne primes

The identity

2^{ab}-1=(2^a-1)\cdot \left(1+2^a+2^{2a}+2^{3a}+\dots+2^{(b-1)a}\right)

shows that Mn can be prime only if n itself is prime, which simplifies the search for Mersenne primes considerably. The converse statement, namely that Mn is necessarily prime if n is prime, is false. The smallest counterexample is 2¹¹-1 = 23×89, a composite number.

Fast algorithms for finding Mersenne primes are available, and this is why the largest known prime numbers today are Mersenne primes.

The first four Mersenne primes M2 = 3, M3 = 7, M5 = 31 and M7 = 127 were known in antiquity. The fifth, M13 = 8191, was discovered anonymously before 1461; the next two (M17 and M19) were found by Cataldi in 1588. After more than a century M31 was verified to be prime by Euler in 1750. The next (in historical, not numerical order) was M127, found by Lucas in 1876, then M61 by Pervushin in 1883. Two more (M89 and M107) were found early in the 20th century, by Powers in 1911 and 1914, respectively.

The numbers are named after 17th century French mathematician Marin Mersenne, who provided a list of Mersenne primes with exponents up to 257. His list was not correct, as he mistakenly included M67 and M257, and omitted M61, M89 and M107.

The best method presently known for testing the primality of Mersenne numbers is based on the computation of a recurring sequence, as developed originally by Lucas in 1878 and improved by Lehmer in the 1930s, now known as the Lucas-Lehmer test for Mersenne numbers. Specifically, it can be shown that (for n > 2) Mn = 2n − 1 is prime if and only if Mn divides Sn-2, where S0 = 4 and for k > 0, S_k=S_{k-1}^2-2.

Graph of number of digits in largest known Mersenne prime by year - electronic era. Note that the vertical scale is logarithmic.
Enlarge
Graph of number of digits in largest known Mersenne prime by year - electronic era. Note that the vertical scale is logarithmic.

The search for Mersenne primes was revolutionized by the introduction of the electronic digital computer. The first successful identification of a Mersenne prime, M521, by this means was achieved at 10:00 P.M. on January 30, 1952 using the U.S. National Bureau of Standards Western Automatic Computer (SWAC) at the Institute for Numerical Analysis at the University of California, Los Angeles, under the direction of Lehmer, with a computer search program written and run by Prof. R.M. Robinson. It was the first Mersenne prime to be identified in thirty-eight years; the next one, M607, was found by the computer a little less than two hours later. Three more — M1279, M2203, M2281 — were found by the same program in the next several months. M4253 is the first Mersenne prime that is titanic, and M44497 is the first gigantic.

As of September 2006, only 44 Mersenne primes are known; the largest known prime number (232,582,657 − 1) is a Mersenne prime. Like several previous Mersenne primes, it was discovered by a distributed computing project on the Internet, known as the Great Internet Mersenne Prime Search (GIMPS).

[edit] Theorems about Mersenne prime

If n is a positive integer, by the Binomial theorem we can write:

c^n-d^n=(c-d)\sum_{k=0}^{n-1} c^kd^{n-1-k},

or

(2^a-1)\cdot \left(1+2^a+2^{2a}+2^{3a}+\dots+2^{(b-1)a}\right)=2^{ab}-1

by setting c = 2a, d = 1, and n = b

proof

(a-b)\sum_{k=0}^{n-1}a^kb^{n-1-k}
=\sum_{k=0}^{n-1}a^{k+1}b^{n-1-k}-\sum_{k=0}^{n-1}a^kb^{n-k}
=a^n+\sum_{k=1}^{n-1}a^kb^{n-k}-\sum_{k=1}^{n-1}a^kb^{n-k}-b^n
= anbn

If 2n − 1 is prime, then n is prime.

proof

By

(2^a-1)\cdot \left(1+2^a+2^{2a}+2^{3a}+\dots+2^{(b-1)a}\right)=2^{ab}-1

If n is not prime, or n = ab where 1 < a,b < n. Therefore, 2a − 1 would divide 2n − 1, or 2n − 1 is not prime.

[edit] List of known Mersenne primes

The table below lists all known Mersenne primes (sequence A000668 in OEIS):

# n Mn Digits in Mn Date of discovery Discoverer
1 2 3 1 ancient ancient
2 3 7 1 ancient ancient
3 5 31 2 ancient ancient
4 7 127 3 ancient ancient
5 13 8191 4 1456 anonymous
6 17 131071 6 1588 Cataldi
7 19 524287 6 1588 Cataldi
8 31 2147483647 10 1750 Euler
9 61 2305843009213693951 19 1883 Pervushin
10 89 618970019…449562111 27 1911 Powers
11 107 162259276…010288127 33 1914 Powers
12 127 170141183…884105727 39 1876 Lucas
13 521 686479766…115057151 157 January 30, 1952 Robinson
14 607 531137992…031728127 183 January 30, 1952 Robinson
15 1,279 104079321…168729087 386 June 25, 1952 Robinson
16 2,203 147597991…697771007 664 October 7, 1952 Robinson
17 2,281 446087557…132836351 687 October 9, 1952 Robinson
18 3,217 259117086…909315071 969 September 8, 1957 Riesel
19 4,253 190797007…350484991 1,281 November 3, 1961 Hurwitz
20 4,423 285542542…608580607 1,332 November 3, 1961 Hurwitz
21 9,689 478220278…225754111 2,917 May 11, 1963 Gillies
22 9,941 346088282…789463551 2,993 May 16, 1963 Gillies
23 11,213 281411201…696392191 3,376 June 2, 1963 Gillies
24 19,937 431542479…968041471 6,002 March 4, 1971 Tuckerman
25 21,701 448679166…511882751 6,533 October 30, 1978 Noll & Nickel
26 23,209 402874115…779264511 6,987 February 9, 1979 Noll
27 44,497 854509824…011228671 13,395 April 8, 1979 Nelson & Slowinski
28 86,243 536927995…433438207 25,962 September 25, 1982 Slowinski
29 110,503 521928313…465515007 33,265 January 28, 1988 Colquitt & Welsh
30 132,049 512740276…730061311 39,751 September 20, 1983 Slowinski
31 216,091 746093103…815528447 65,050 September 6, 1985 Slowinski
32 756,839 174135906…544677887 227,832 February 19, 1992 Slowinski & Gage on Harwell Lab Cray-2 [1]
33 859,433 129498125…500142591 258,716 January 10, 1994 Slowinski & Gage
34 1,257,787 412245773…089366527 378,632 September 3, 1996 Slowinski & Gage [2]
35 1,398,269 814717564…451315711 420,921 November 13, 1996 GIMPS / Joel Armengaud [3]
36 2,976,221 623340076…729201151 895,932 August 24, 1997 GIMPS / Gordon Spence [4]
37 3,021,377 127411683…024694271 909,526 January 27, 1998 GIMPS / Roland Clarkson [5]
38 6,972,593 437075744…924193791 2,098,960 June 1, 1999 GIMPS / Nayan Hajratwala [6]
39 13,466,917 924947738…256259071 4,053,946 November 14, 2001 GIMPS / Michael Cameron [7]
40* 20,996,011 125976895…855682047 6,320,430 November 17, 2003 GIMPS / Michael Shafer [8]
41* 24,036,583 299410429…733969407 7,235,733 May 15, 2004 GIMPS / Josh Findley [9]
42* 25,964,951 122164630…577077247 7,816,230 February 18, 2005 GIMPS / Martin Nowak [10]
43* 30,402,457 315416475…652943871 9,152,052 December 15, 2005 GIMPS / Curtis Cooper & Steven Boone [11]
44* 32,582,657 124575026…053967871 9,808,358 September 4, 2006 GIMPS / Curtis Cooper & Steven Boone [12]

*It is not known whether any undiscovered Mersenne primes exist between the 39th (M13,466,917) and the 44th (M32,582,657) on this chart; the ranking is therefore provisional.

[edit] See also

[edit] External links

Static Wikipedia (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2007 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2006 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu

Static Wikipedia February 2008 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu