Web Analytics

See also ebooksgratis.com: no banners, no cookies, totally FREE.

CLASSICISTRANIERI HOME PAGE - YOUTUBE CHANNEL
Privacy Policy Cookie Policy Terms and Conditions
Table of divisors - Wikipedia, the free encyclopedia

Table of divisors

From Wikipedia, the free encyclopedia

The tables below list all of the divisors of the numbers 1 to 1000.

A divisor of an integer n is an integer m, say, for which n/m is again an integer (which is necessarily also a divisor of n). For example, 3 is a divisor of 21, since 21/3 = 7 (and 7 is also a divisor of 21).

If m is a divisor of n then so is −m. The tables below only list positive divisors.

Contents

[edit] Key to the tables

  • d(n) is the number of positive divisors of n, including 1 and n itself
  • σ(n) is the sum of all the positive divisors of n, including 1 and n itself
  • s(n) is the sum of the proper divisors of n, which does not include n itself; that is, s(n) = σ(n) − n
  • a perfect number equals the sum of its proper divisors; that is, s(n) = n; the only perfect numbers between 1 and 1000 are 6, 28 and 496
  • amicable numbers and sociable numbers are numbers where the sum of their proper divisors form a cycle; the only examples below 1000 are 220 and 284
  • a deficient number is greater than the sum of its proper divisors; that is, s(n) < n
  • an abundant number is less than the sum of its proper divisors; that is, s(n) > n
  • a prime number has only 1 and itself as divisors; that is, d(n) = 2. Prime numbers are always deficient as s(n)=1

[edit] Divisors of the numbers 1 to 100

n Divisors d(n) σ(n) s(n) Notes
1 1 1 1 0 deficient, highly abundant, superabundant, highly composite
2 1, 2 2 3 1 deficient, highly abundant, superabundant, colossally abundant, prime, highly composite, superior highly composite
3 1, 3 2 4 1 deficient, highly abundant, prime
4 1, 2, 4 3 7 3 deficient, highly abundant, superabundant, composite, highly composite
5 1, 5 2 6 1 deficient, prime
6 1, 2, 3, 6 4 12 6 perfect, highly abundant, superabundant, colossally abundant, composite, highly composite, superior highly composite
7 1, 7 2 8 1 deficient, prime
8 1, 2, 4, 8 4 15 7 deficient, highly abundant, composite
9 1, 3, 9 3 13 4 deficient, composite
10 1, 2, 5, 10 4 18 8 deficient, highly abundant, composite
11 1, 11 2 12 1 deficient, prime
12 1, 2, 3, 4, 6, 12 6 28 16 abundant, highly abundant, superabundant, colossally abundant, composite, highly composite, superior highly composite
13 1, 13 2 14 1 deficient, prime
14 1, 2, 7, 14 4 24 10 deficient, composite
15 1, 3, 5, 15 4 24 9 deficient, composite
16 1, 2, 4, 8, 16 5 31 15 deficient, highly abundant, composite
17 1, 17 2 18 1 deficient, prime
18 1, 2, 3, 6, 9, 18 6 39 21 abundant, highly abundant, composite
19 1, 19 2 20 1 deficient, prime
20 1, 2, 4, 5, 10, 20 6 42 22 abundant, highly abundant, composite
n Divisors d(n) σ(n) s(n) Notes
21 1, 3, 7, 21 4 32 11 deficient, composite
22 1, 2, 11, 22 4 36 14 deficient, composite
23 1, 23 2 24 1 deficient, prime
24 1, 2, 3, 4, 6, 8, 12, 24 8 60 36 abundant, highly abundant, superabundant, composite, highly composite
25 1, 5, 25 3 31 6 deficient, composite
26 1, 2, 13, 26 4 42 16 deficient, composite
27 1, 3, 9, 27 4 40 13 deficient, composite
28 1, 2, 4, 7, 14, 28 6 56 28 perfect, composite
29 1, 29 2 30 1 deficient, prime
30 1, 2, 3, 5, 6, 10, 15, 30 8 72 42 abundant, highly abundant, composite
31 1, 31 2 32 1 deficient, prime
32 1, 2, 4, 8, 16, 32 6 63 31 deficient, composite
33 1, 3, 11, 33 4 48 15 deficient, composite
34 1, 2, 17, 34 4 54 20 deficient, composite
35 1, 5, 7, 35 4 48 13 deficient, composite
36 1, 2, 3, 4, 6, 9, 12, 18, 36 9 91 55 abundant, highly abundant, superabundant, composite, highly composite
37 1, 37 2 38 1 deficient, prime
38 1, 2, 19, 38 4 60 22 deficient, composite
39 1, 3, 13, 39 4 56 17 deficient, composite
40 1, 2, 4, 5, 8, 10, 20, 40 8 90 50 abundant, composite
n Divisors d(n) σ(n) s(n) Notes
41 1, 41 2 42 1 deficient, prime
42 1, 2, 3, 6, 7, 14, 21, 42 8 96 54 abundant, highly abundant, composite
43 1, 43 2 44 1 deficient, prime
44 1, 2, 4, 11, 22, 44 6 84 40 deficient, composite
45 1, 3, 5, 9, 15, 45 6 78 33 deficient, composite
46 1, 2, 23, 46 4 72 26 deficient, composite
47 1, 47 2 48 1 deficient, prime
48 1, 2, 3, 4, 6, 8, 12, 16, 24, 48 10 124 76 abundant, highly abundant, superabundant, composite, highly composite
49 1, 7, 49 3 57 8 deficient, composite
50 1, 2, 5, 10, 25, 50 6 93 43 deficient, composite
51 1, 3, 17, 51 4 72 21 deficient, composite
52 1, 2, 4, 13, 26, 52 6 98 46 deficient, composite
53 1, 53 2 54 1 deficient, prime
54 1, 2, 3, 6, 9, 18, 27, 54 8 120 66 abundant, composite
55 1, 5, 11, 55 4 72 17 deficient, composite
56 1, 2, 4, 7, 8, 14, 28, 56 8 120 64 abundant, composite
57 1, 3, 19, 57 4 80 23 deficient, composite
58 1, 2, 29, 58 4 90 32 deficient, composite
59 1, 59 2 60 1 deficient, prime
60 1, 2, 3, 4, 5, 6, 10, 12, 15, 20, 30, 60 12 168 108 abundant, highly abundant, superabundant, colossally abundant, composite, highly composite, superior highly composite
n Divisors d(n) σ(n) s(n) Notes
61 1, 61 2 62 1 deficient, prime
62 1, 2, 31, 62 4 96 34 deficient, composite
63 1, 3, 7, 9, 21, 63 6 104 41 deficient, composite
64 1, 2, 4, 8, 16, 32, 64 7 127 63 deficient, composite
65 1, 5, 13, 65 4 84 19 deficient, composite
66 1, 2, 3, 6, 11, 22, 33, 66 8 144 78 abundant, composite
67 1, 67 2 68 1 deficient, prime
68 1, 2, 4, 17, 34, 68 6 126 58 deficient, composite
69 1, 3, 23, 69 4 96 27 deficient, composite
70 1, 2, 5, 7, 10, 14, 35, 70 8 144 74 abundant, composite
71 1, 71 2 72 1 deficient, prime
72 1, 2, 3, 4, 6, 8, 9, 12, 18, 24, 36, 72 12 195 123 abundant, highly abundant, composite
73 1, 73 2 74 1 deficient, prime
74 1, 2, 37, 74 4 114 40 deficient, composite
75 1, 3, 5, 15, 25, 75 6 124 49 deficient, composite
76 1, 2, 4, 19, 38, 76 6 140 64 deficient, composite
77 1, 7, 11, 77 4 96 19 deficient, composite
78 1, 2, 3, 6, 13, 26, 39, 78 8 168 90 abundant, composite
79 1, 79 2 80 1 deficient, prime
80 1, 2, 4, 5, 8, 10, 16, 20, 40, 80 10 186 106 abundant, composite
n Divisors d(n) σ(n) s(n) Notes
81 1, 3, 9, 27, 81 5 121 40 deficient, composite
82 1, 2, 41, 82 4 126 44 deficient, composite
83 1, 83 2 84 1 deficient, prime
84 1, 2, 3, 4, 6, 7, 12, 14, 21, 28, 42, 84 12 224 140 abundant, highly abundant, composite
85 1, 5, 17, 85 4 108 23 deficient, composite
86 1, 2, 43, 86 4 132 46 deficient, composite
87 1, 3, 29, 87 4 120 33 deficient, composite
88 1, 2, 4, 8, 11, 22, 44, 88 8 180 92 abundant, composite
89 1, 89 2 90 1 deficient, prime
90 1, 2, 3, 5, 6, 9, 10, 15, 18, 30, 45, 90 12 234 144 abundant, highly abundant, composite
91 1, 7, 13, 91 4 112 21 deficient, composite
92 1, 2, 4, 23, 46, 92 6 168 76 deficient, composite
93 1, 3, 31, 93 4 128 35 deficient, composite
94 1, 2, 47, 94 4 144 50 deficient, composite
95 1, 5, 19, 95 4 120 25 deficient, composite
96 1, 2, 3, 4, 6, 8, 12, 16, 24, 32, 48, 96 12 252 156 abundant, highly abundant, composite
97 1, 97 2 98 1 deficient, prime
98 1, 2, 7, 14, 49, 98 6 171 73 deficient, composite
99 1, 3, 9, 11, 33, 99 6 156 57 deficient, composite
100 1, 2, 4, 5, 10, 20, 25, 50, 100 9 217 117 abundant, composite

[edit] Divisors of the numbers 101 to 200

n Divisors d(n) σ(n) s(n) Notes
101 1, 101 2 102 1 deficient, prime
102 1, 2, 3, 6, 17, 34, 51, 102 8 216 114 abundant, composite
103 1, 103 2 104 1 deficient, prime
104 1, 2, 4, 8, 13, 26, 52, 104 8 210 106 abundant, composite
105 1, 3, 5, 7, 15, 21, 35, 105 8 192 87 deficient, composite
106 1, 2, 53, 106 4 162 56 deficient, composite
107 1, 107 2 108 1 deficient, prime
108 1, 2, 3, 4, 6, 9, 12, 18, 27, 36, 54, 108 12 280 172 abundant, highly abundant, composite
109 1, 109 2 110 1 deficient, prime
110 1, 2, 5, 10, 11, 22, 55, 110 8 216 106 deficient, composite
111 1, 3, 37, 111 4 152 41 deficient, composite
112 1, 2, 4, 7, 8, 14, 16, 28, 56, 112 10 248 136 abundant, composite
113 1, 113 2 114 1 deficient, prime
114 1, 2, 3, 6, 19, 38, 57, 114 8 240 126 abundant, composite
115 1, 5, 23, 115 4 144 29 deficient, composite
116 1, 2, 4, 29, 58, 116 6 210 94 deficient, composite
117 1, 3, 9, 13, 39, 117 6 182 65 deficient, composite
118 1, 2, 59, 118 4 180 62 deficient, composite
119 1, 7, 17, 119 4 144 25 deficient, composite
120 1, 2, 3, 4, 5, 6, 8, 10, 12, 15, 20, 24, 30, 40, 60, 120 16 360 240 abundant, highly abundant, superabundant, colossally abundant, composite, highly composite, superior highly composite
n Divisors d(n) σ(n) s(n) Notes
121 1, 11, 121 3 133 12 deficient, composite
122 1, 2, 61, 122 4 186 64 deficient, composite
123 1, 3, 41, 123 4 168 45 deficient, composite
124 1, 2, 4, 31, 62, 124 6 224 100 deficient, composite
125 1, 5, 25, 125 4 156 31 deficient, composite
126 1, 2, 3, 6, 7, 9, 14, 18, 21, 42, 63, 126 12 312 186 abundant, composite
127 1, 127 2 128 1 deficient, prime
128 1, 2, 4, 8, 16, 32, 64, 128 8 255 127 deficient, composite
129 1, 3, 43, 129 4 176 47 deficient, composite
130 1, 2, 5, 10, 13, 26, 65, 130 8 252 122 deficient, composite
131 1, 131 2 132 1 deficient, prime
132 1, 2, 3, 4, 6, 11, 12, 22, 33, 44, 66, 132 12 336 204 abundant, composite
133 1, 7, 19, 133 4 160 27 deficient, composite
134 1, 2, 67, 134 4 204 70 deficient, composite
135 1, 3, 5, 9, 15, 27, 45, 135 8 240 105 deficient, composite
136 1, 2, 4, 8, 17, 34, 68, 136 8 270 134 deficient, composite
137 1, 137 2 138 1 deficient, prime
138 1, 2, 3, 6, 23, 46, 69, 138 8 288 150 abundant, composite
139 1, 139 2 140 1 deficient, prime
140 1, 2, 4, 5, 7, 10, 14, 20, 28, 35, 70, 140 12 336 196 abundant, composite
n Divisors d(n) σ(n) s(n) Notes
141 1, 3, 47, 141 4 192 51 deficient, composite
142 1, 2, 71, 142 4 216 74 deficient, composite
143 1, 11, 13, 143 4 168 25 deficient, composite
144 1, 2, 3, 4, 6, 8, 9, 12, 16, 18, 24, 36, 48, 72, 144 15 403 259 abundant, highly abundant, composite
145 1, 5, 29, 145 4 180 35 deficient, composite
146 1, 2, 73, 146 4 222 76 deficient, composite
147 1, 3, 7, 21, 49, 147 6 228 81 deficient, composite
148 1, 2, 4, 37, 74, 148 6 266 118 deficient, composite
149 1, 149 2 150 1 deficient, prime
150 1, 2, 3, 5, 6, 10, 15, 25, 30, 50, 75, 150 12 372 222 abundant, composite
151 1, 151 2 152 1 deficient, prime
152 1, 2, 4, 8, 19, 38, 76, 152 8 300 148 deficient, composite
153 1, 3, 9, 17, 51, 153 6 234 81 deficient, composite
154 1, 2, 7, 11, 14, 22, 77, 154 8 288 134 deficient, composite
155 1, 5, 31, 155 4 192 37 deficient, composite
156 1, 2, 3, 4, 6, 12, 13, 26, 39, 52, 78, 156 12 392 236 abundant, composite
157 1, 157 2 158 1 deficient, prime
158 1, 2, 79, 158 4 240 82 deficient, composite
159 1, 3, 53, 159 4 216 57 deficient, composite
160 1, 2, 4, 5, 8, 10, 16, 20, 32, 40, 80, 160 12 378 218 abundant, composite
n Divisors d(n) σ(n) s(n) Notes
161 1, 7, 23, 161 4 192 31 deficient, composite
162 1, 2, 3, 6, 9, 18, 27, 54, 81, 162 10 363 201 abundant, composite
163 1, 163 2 164 1 deficient, prime
164 1, 2, 4, 41, 82, 164 6 294 130 deficient, composite
165 1, 3, 5, 11, 15, 33, 55, 165 8 288 123 deficient, composite
166 1, 2, 83, 166 4 252 86 deficient, composite
167 1, 167 2 168 1 deficient, prime
168 1, 2, 3, 4, 6, 7, 8, 12, 14, 21, 24, 28, 42, 56, 84, 168 16 480 312 abundant, highly abundant, composite
169 1, 13, 169 3 183 14 deficient, composite
170 1, 2, 5, 10, 17, 34, 85, 170 8 324 154 deficient, composite
171 1, 3, 9, 19, 57, 171 6 260 89 deficient, composite
172 1, 2, 4, 43, 86, 172 6 308 136 deficient, composite
173 1, 173 2 174 1 deficient, prime
174 1, 2, 3, 6, 29, 58, 87, 174 8 360 186 abundant, composite
175 1, 5, 7, 25, 35, 175 6 248 73 deficient, composite
176 1, 2, 4, 8, 11, 16, 22, 44, 88, 176 10 372 196 abundant, composite
177 1, 3, 59, 177 4 240 63 deficient, composite
178 1, 2, 89, 178 4 270 92 deficient, composite
179 1, 179 2 180 1 deficient, prime
180 1, 2, 3, 4, 5, 6, 9, 10, 12, 15, 18, 20, 30, 36, 45, 60, 90, 180 18 546 366 abundant, highly abundant, superabundant, composite, highly composite
n Divisors d(n) σ(n) s(n) Notes
181 1, 181 2 182 1 deficient, prime
182 1, 2, 7, 13, 14, 26, 91, 182 8 336 154 deficient, composite
183 1, 3, 61, 183 4 248 65 deficient, composite
184 1, 2, 4, 8, 23, 46, 92, 184 8 360 176 deficient, composite
185 1, 5, 37, 185 4 228 43 deficient, composite
186 1, 2, 3, 6, 31, 62, 93, 186 8 384 198 abundant, composite
187 1, 11, 17, 187 4 216 29 deficient, composite
188 1, 2, 4, 47, 94, 188 6 336 148 deficient, composite
189 1, 3, 7, 9, 21, 27, 63, 189 8 320 131 deficient, composite
190 1, 2, 5, 10, 19, 38, 95, 190 8 360 170 deficient, composite
191 1, 191 2 192 1 deficient, prime
192 1, 2, 3, 4, 6, 8, 12, 16, 24, 32, 48, 64, 96, 192 14 508 316 abundant, composite
193 1, 193 2 194 1 deficient, prime
194 1, 2, 97, 194 4 294 100 deficient, composite
195 1, 3, 5, 13, 15, 39, 65, 195 8 336 141 deficient, composite
196 1, 2, 4, 7, 14, 28, 49, 98, 196 9 399 203 abundant, composite
197 1, 197 2 198 1 deficient, prime
198 1, 2, 3, 6, 9, 11, 18, 22, 33, 66, 99, 198 12 468 270 abundant, composite
199 1, 199 2 200 1 deficient, prime
200 1, 2, 4, 5, 8, 10, 20, 25, 40, 50, 100, 200 12 465 265 abundant, composite

[edit] Divisors of the numbers 201 to 300

n Divisors d(n) σ(n) s(n) Notes
201 1, 3, 67, 201 4 272 71 deficient, composite
202 1, 2, 101, 202 4 306 104 deficient, composite
203 1, 7, 29, 203 4 240 37 deficient, composite
204 1, 2, 3, 4, 6, 12, 17, 34, 51, 68, 102, 204 12 504 300 abundant, composite
205 1, 5, 41, 205 4 252 47 deficient, composite
206 1, 2, 103, 206 4 312 106 deficient, composite
207 1, 3, 9, 23, 69, 207 6 312 105 deficient, composite
208 1, 2, 4, 8, 13, 16, 26, 52, 104, 208 10 434 226 abundant, composite
209 1, 11, 19, 209 4 240 31 deficient, composite
210 1, 2, 3, 5, 6, 7, 10, 14, 15, 21, 30, 35, 42, 70, 105, 210 16 576 366 abundant, highly abundant, composite
211 1, 211 2 212 1 deficient, prime
212 1, 2, 4, 53, 106, 212 6 378 166 deficient, composite
213 1, 3, 71, 213 4 288 75 deficient, composite
214 1, 2, 107, 214 4 324 110 deficient, composite
215 1, 5, 43, 215 4 264 49 deficient, composite
216 1, 2, 3, 4, 6, 8, 9, 12, 18, 24, 27, 36, 54, 72, 108, 216 16 600 384 abundant, highly abundant, composite
217 1, 7, 31, 217 4 256 39 deficient, composite
218 1, 2, 109, 218 4 330 112 deficient, composite
219 1, 3, 73, 219 4 296 77 deficient, composite
220 1, 2, 4, 5, 10, 11, 20, 22, 44, 55, 110, 220 12 504 284 abundant, amicable, composite
n Divisors d(n) σ(n) s(n) Notes
221 1, 13, 17, 221 4 252 31 deficient, composite
222 1, 2, 3, 6, 37, 74, 111, 222 8 456 234 abundant, composite
223 1, 223 2 224 1 deficient, prime
224 1, 2, 4, 7, 8, 14, 16, 28, 32, 56, 112, 224 12 504 280 abundant, composite
225 1, 3, 5, 9, 15, 25, 45, 75, 225 9 403 178 deficient, composite
226 1, 2, 113, 226 4 342 116 deficient, composite
227 1, 227 2 228 1 deficient, prime
228 1, 2, 3, 4, 6, 12, 19, 38, 57, 76, 114, 228 12 560 332 abundant, composite
229 1, 229 2 230 1 deficient, prime
230 1, 2, 5, 10, 23, 46, 115, 230 8 432 202 deficient, composite
231 1, 3, 7, 11, 21, 33, 77, 231 8 384 153 deficient, composite
232 1, 2, 4, 8, 29, 58, 116, 232 8 450 218 deficient, composite
233 1, 233 2 234 1 deficient, prime
234 1, 2, 3, 6, 9, 13, 18, 26, 39, 78, 117, 234 12 546 312 abundant, composite
235 1, 5, 47, 235 4 288 53 deficient, composite
236 1, 2, 4, 59, 118, 236 6 420 184 deficient, composite
237 1, 3, 79, 237 4 320 83 deficient, composite
238 1, 2, 7, 14, 17, 34, 119, 238 8 432 194 deficient, composite
239 1, 239 2 240 1 deficient, prime
240 1, 2, 3, 4, 5, 6, 8, 10, 12, 15, 16, 20, 24, 30, 40, 48, 60, 80, 120, 240 20 744 504 abundant, highly abundant, superabundant, composite, highly composite
n Divisors d(n) σ(n) s(n) Notes
241 1, 241 2 242 1 deficient, prime
242 1, 2, 11, 22, 121, 242 6 399 157 deficient, composite
243 1, 3, 9, 27, 81, 243 6 364 121 deficient, composite
244 1, 2, 4, 61, 122, 244 6 434 190 deficient, composite
245 1, 5, 7, 35, 49, 245 6 342 97 deficient, composite
246 1, 2, 3, 6, 41, 82, 123, 246 8 504 258 abundant, composite
247 1, 13, 19, 247 4 280 33 deficient, composite
248 1, 2, 4, 8, 31, 62, 124, 248 8 480 232 deficient, composite
249 1, 3, 83, 249 4 336 87 deficient, composite
250 1, 2, 5, 10, 25, 50, 125, 250 8 468 218 deficient, composite
251 1, 251 2 252 1 deficient, prime
252 1, 2, 3, 4, 6, 7, 9, 12, 14, 18, 21, 28, 36, 42, 63, 84, 126, 252 18 728 476 abundant, composite
253 1, 11, 23, 253 4 288 35 deficient, composite
254 1, 2, 127, 254 4 384 130 deficient, composite
255 1, 3, 5, 15, 17, 51, 85, 255 8 432 177 deficient, composite
256 1, 2, 4, 8, 16, 32, 64, 128, 256 9 511 255 deficient, composite
257 1, 257 2 258 1 deficient, prime
258 1, 2, 3, 6, 43, 86, 129, 258 8 528 270 abundant, composite
259 1, 7, 37, 259 4 304 45 deficient, composite
260 1, 2, 4, 5, 10, 13, 20, 26, 52, 65, 130, 260 12 588 328 abundant, composite
n Divisors d(n) σ(n) s(n) Notes
261 1, 3, 9, 29, 87, 261 6 390 129 deficient, composite
262 1, 2, 131, 262 4 396 134 deficient, composite
263 1, 263 2 264 1 deficient, prime
264 1, 2, 3, 4, 6, 8, 11, 12, 22, 24, 33, 44, 66, 88, 132, 264 16 720 456 abundant, composite
265 1, 5, 53, 265 4 324 59 deficient, composite
266 1, 2, 7, 14, 19, 38, 133, 266 8 480 214 deficient, composite
267 1, 3, 89, 267 4 360 93 deficient, composite
268 1, 2, 4, 67, 134, 268 6 476 208 deficient, composite
269 1, 269 2 270 1 deficient, prime
270 1, 2, 3, 5, 6, 9, 10, 15, 18, 27, 30, 45, 54, 90, 135, 270 16 720 450 abundant, composite
271 1, 271 2 272 1 deficient, prime
272 1, 2, 4, 8, 16, 17, 34, 68, 136, 272 10 558 286 abundant, composite
273 1, 3, 7, 13, 21, 39, 91, 273 8 448 175 deficient, composite
274 1, 2, 137, 274 4 414 140 deficient, composite
275 1, 5, 11, 25, 55, 275 6 372 97 deficient, composite
276 1, 2, 3, 4, 6, 12, 23, 46, 69, 92, 138, 276 12 672 396 abundant, composite
277 1, 277 2 278 1 deficient, prime
278 1, 2, 139, 278 4 420 142 deficient, composite
279 1, 3, 9, 31, 93, 279 6 416 137 deficient, composite
280 1, 2, 4, 5, 7, 8, 10, 14, 20, 28, 35, 40, 56, 70, 140, 280 16 720 440 abundant, composite
n Divisors d(n) σ(n) s(n) Notes
281 1, 281 2 282 1 deficient, prime
282 1, 2, 3, 6, 47, 94, 141, 282 8 576 294 abundant, composite
283 1, 283 2 284 1 deficient, prime
284 1, 2, 4, 71, 142, 284 6 504 220 deficient, amicable, composite
285 1, 3, 5, 15, 19, 57, 95, 285 8 480 195 deficient, composite
286 1, 2, 11, 13, 22, 26, 143, 286 8 504 218 deficient, composite
287 1, 7, 41, 287 4 336 49 deficient, composite
288 1, 2, 3, 4, 6, 8, 9, 12, 16, 18, 24, 32, 36, 48, 72, 96, 144, 288 18 819 531 abundant, highly abundant, composite
289 1, 17, 289 3 307 18 deficient, composite
290 1, 2, 5, 10, 29, 58, 145, 290 8 540 250 deficient, composite
291 1, 3, 97, 291 4 392 101 deficient, composite
292 1, 2, 4, 73, 146, 292 6 518 226 deficient, composite
293 1, 293 2 294 1 deficient, prime
294 1, 2, 3, 6, 7, 14, 21, 42, 49, 98, 147, 294 12 684 390 abundant, composite
295 1, 5, 59, 295 4 360 65 deficient, composite
296 1, 2, 4, 8, 37, 74, 148, 296 8 570 274 deficient, composite
297 1, 3, 9, 11, 27, 33, 99, 297 8 480 183 deficient, composite
298 1, 2, 149, 298 4 450 152 deficient, composite
299 1, 13, 23, 299 4 336 37 deficient, composite
300 1, 2, 3, 4, 5, 6, 10, 12, 15, 20, 25, 30, 50, 60, 75, 100, 150, 300 18 868 568 abundant, highly abundant, composite

[edit] Divisors of the numbers 301 to 400

n Divisors d(n) σ(n) s(n) Notes
301 1, 7, 43, 301 4 352 51 deficient, composite
302 1, 2, 151, 302 4 456 154 deficient, composite
303 1, 3, 101, 303 4 408 105 deficient, composite
304 1, 2, 4, 8, 16, 19, 38, 76, 152, 304 10 620 316 abundant, composite
305 1, 5, 61, 305 4 372 67 deficient, composite
306 1, 2, 3, 6, 9, 17, 18, 34, 51, 102, 153, 306 12 702 396 abundant, composite
307 1, 307 2 308 1 deficient, prime
308 1, 2, 4, 7, 11, 14, 22, 28, 44, 77, 154, 308 12 672 364 abundant, composite
309 1, 3, 103, 309 4 416 107 deficient, composite
310 1, 2, 5, 10, 31, 62, 155, 310 8 576 266 deficient, composite
311 1, 311 2 312 1 deficient, prime
312 1, 2, 3, 4, 6, 8, 12, 13, 24, 26, 39, 52, 78, 104, 156, 312 16 840 528 abundant, composite
313 1, 313 2 314 1 deficient, prime
314 1, 2, 157, 314 4 474 160 deficient, composite
315 1, 3, 5, 7, 9, 15, 21, 35, 45, 63, 105, 315 12 624 309 deficient, composite
316 1, 2, 4, 79, 158, 316 6 560 244 deficient, composite
317 1, 317 2 318 1 deficient, prime
318 1, 2, 3, 6, 53, 106, 159, 318 8 648 330 abundant, composite
319 1, 11, 29, 319 4 360 41 deficient, composite
320 1, 2, 4, 5, 8, 10, 16, 20, 32, 40, 64, 80, 160, 320 14 762 442 abundant, composite
n Divisors d(n) σ(n) s(n) Notes
321 1, 3, 107, 321 4 432 111 deficient, composite
322 1, 2, 7, 14, 23, 46, 161, 322 8 576 254 deficient, composite
323 1, 17, 19, 323 4 360 37 deficient, composite
324 1, 2, 3, 4, 6, 9, 12, 18, 27, 36, 54, 81, 108, 162, 324 15 847 523 abundant, composite
325 1, 5, 13, 25, 65, 325 6 434 109 deficient, composite
326 1, 2, 163, 326 4 492 166 deficient, composite
327 1, 3, 109, 327 4 440 113 deficient, composite
328 1, 2, 4, 8, 41, 82, 164, 328 8 630 302 deficient, composite
329 1, 7, 47, 329 4 384 55 deficient, composite
330 1, 2, 3, 5, 6, 10, 11, 15, 22, 30, 33, 55, 66, 110, 165, 330 16 864 534 abundant, composite
331 1, 331 2 332 1 deficient, prime
332 1, 2, 4, 83, 166, 332 6 588 256 deficient, composite
333 1, 3, 9, 37, 111, 333 6 494 161 deficient, composite
334 1, 2, 167, 334 4 504 170 deficient, composite
335 1, 5, 67, 335 4 408 73 deficient, composite
336 1, 2, 3, 4, 6, 7, 8, 12, 14, 16, 21, 24, 28, 42, 48, 56, 84, 112, 168, 336 20 992 656 abundant, highly abundant, composite
337 1, 337 2 338 1 deficient, prime
338 1, 2, 13, 26, 169, 338 6 549 211 deficient, composite
339 1, 3, 113, 339 4 456 117 deficient, composite
340 1, 2, 4, 5, 10, 17, 20, 34, 68, 85, 170, 340 12 756 416 abundant, composite
n Divisors d(n) σ(n) s(n) Notes
341 1, 11, 31, 341 4 384 43 deficient, composite
342 1, 2, 3, 6, 9, 18, 19, 38, 57, 114, 171, 342 12 780 438 abundant, composite
343 1, 7, 49, 343 4 400 57 deficient, composite
344 1, 2, 4, 8, 43, 86, 172, 344 8 660 316 deficient, composite
345 1, 3, 5, 15, 23, 69, 115, 345 8 576 231 deficient, composite
346 1, 2, 173, 346 4 522 176 deficient, composite
347 1, 347 2 348 1 deficient, prime
348 1, 2, 3, 4, 6, 12, 29, 58, 87, 116, 174, 348 12 840 492 abundant, composite
349 1, 349 2 350 1 deficient, prime
350 1, 2, 5, 7, 10, 14, 25, 35, 50, 70, 175, 350 12 744 394 abundant, composite
351 1, 3, 9, 13, 27, 39, 117, 351 8 560 209 deficient, composite
352 1, 2, 4, 8, 11, 16, 22, 32, 44, 88, 176, 352 12 756 404 abundant, composite
353 1, 353 2 354 1 deficient, prime
354 1, 2, 3, 6, 59, 118, 177, 354 8 720 366 abundant, composite
355 1, 5, 71, 355 4 432 77 deficient, composite
356 1, 2, 4, 89, 178, 356 6 630 274 deficient, composite
357 1, 3, 7, 17, 21, 51, 119, 357 8 576 219 deficient, composite
358 1, 2, 179, 358 4 540 182 deficient, composite
359 1, 359 2 360 1 deficient, prime
360 1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 15, 18, 20, 24, 30, 36, 40, 45, 60, 72, 90, 120, 180, 360 24 1170 810 abundant, highly abundant, superabundant, colossally abundant, composite, highly composite, superior highly composite
n Divisors d(n) σ(n) s(n) Notes
361 1, 19, 361 3 381 20 deficient, composite
362 1, 2, 181, 362 4 546 184 deficient, composite
363 1, 3, 11, 33, 121, 363 6 532 169 deficient, composite
364 1, 2, 4, 7, 13, 14, 26, 28, 52, 91, 182, 364 12 784 420 abundant, composite
365 1, 5, 73, 365 4 444 79 deficient, composite
366 1, 2, 3, 6, 61, 122, 183, 366 8 744 378 abundant, composite
367 1, 367 2 368 1 deficient, prime
368 1, 2, 4, 8, 16, 23, 46, 92, 184, 368 10 744 376 abundant, composite
369 1, 3, 9, 41, 123, 369 6 546 177 deficient, composite
370 1, 2, 5, 10, 37, 74, 185, 370 8 684 314 deficient, composite
371 1, 7, 53, 371 4 432 61 deficient, composite
372 1, 2, 3, 4, 6, 12, 31, 62, 93, 124, 186, 372 12 896 524 abundant, composite
373 1, 373 2 374 1 deficient, prime
374 1, 2, 11, 17, 22, 34, 187, 374 8 648 274 deficient, composite
375 1, 3, 5, 15, 25, 75, 125, 375 8 624 249 deficient, composite
376 1, 2, 4, 8, 47, 94, 188, 376 8 720 344 deficient, composite
377 1, 13, 29, 377 4 420 43 deficient, composite
378 1, 2, 3, 6, 7, 9, 14, 18, 21, 27, 42, 54, 63, 126, 189, 378 16 960 582 abundant, composite
379 1, 379 2 380 1 deficient, prime
380 1, 2, 4, 5, 10, 19, 20, 38, 76, 95, 190, 380 12 840 460 abundant, composite
n Divisors d(n) σ(n) s(n) Notes
381 1, 3, 127, 381 4 512 131 deficient, composite
382 1, 2, 191, 382 4 576 194 deficient, composite
383 1, 383 2 384 1 deficient, prime
384 1, 2, 3, 4, 6, 8, 12, 16, 24, 32, 48, 64, 96, 128, 192, 384 16 1020 636 abundant, composite
385 1, 5, 7, 11, 35, 55, 77, 385 8 576 191 deficient, composite
386 1, 2, 193, 386 4 582 196 deficient, composite
387 1, 3, 9, 43, 129, 387 6 572 185 deficient, composite
388 1, 2, 4, 97, 194, 388 6 686 298 deficient, composite
389 1, 389 2 390 1 deficient, prime
390 1, 2, 3, 5, 6, 10, 13, 15, 26, 30, 39, 65, 78, 130, 195, 390 16 1008 618 abundant, composite
391 1, 17, 23, 391 4 432 41 deficient, composite
392 1, 2, 4, 7, 8, 14, 28, 49, 56, 98, 196, 392 12 855 463 abundant, composite
393 1, 3, 131, 393 4 528 135 deficient, composite
394 1, 2, 197, 394 4 594 200 deficient, composite
395 1, 5, 79, 395 4 480 85 deficient, composite
396 1, 2, 3, 4, 6, 9, 11, 12, 18, 22, 33, 36, 44, 66, 99, 132, 198, 396 18 1092 696 abundant, composite
397 1, 397 2 398 1 deficient, prime
398 1, 2, 199, 398 4 600 202 deficient, composite
399 1, 3, 7, 19, 21, 57, 133, 399 8 640 241 deficient, composite
400 1, 2, 4, 5, 8, 10, 16, 20, 25, 40, 50, 80, 100, 200, 400 15 961 561 abundant, composite

[edit] Divisors of the numbers 401 to 500

n Divisors d(n) σ(n) s(n) Notes
401 1, 401 2 402 1 deficient, prime
402 1, 2, 3, 6, 67, 134, 201, 402 8 816 414 abundant, composite
403 1, 13, 31, 403 4 448 45 deficient, composite
404 1, 2, 4, 101, 202, 404 6 714 310 deficient, composite
405 1, 3, 5, 9, 15, 27, 45, 81, 135, 405 10 726 321 deficient, composite
406 1, 2, 7, 14, 29, 58, 203, 406 8 720 314 deficient, composite
407 1, 11, 37, 407 4 456 49 deficient, composite
408 1, 2, 3, 4, 6, 8, 12, 17, 24, 34, 51, 68, 102, 136, 204, 408 16 1080 672 abundant, composite
409 1, 409 2 410 1 deficient, prime
410 1, 2, 5, 10, 41, 82, 205, 410 8 756 346 deficient, composite
411 1, 3, 137, 411 4 552 141 deficient, composite
412 1, 2, 4, 103, 206, 412 6 728 316 deficient, composite
413 1, 7, 59, 413 4 480 67 deficient, composite
414 1, 2, 3, 6, 9, 18, 23, 46, 69, 138, 207, 414 12 936 522 abundant, composite
415 1, 5, 83, 415 4 504 89 deficient, composite
416 1, 2, 4, 8, 13, 16, 26, 32, 52, 104, 208, 416 12 882 466 abundant, composite
417 1, 3, 139, 417 4 560 143 deficient, composite
418 1, 2, 11, 19, 22, 38, 209, 418 8 720 302 deficient, composite
419 1, 419 2 420 1 deficient, prime
420 1, 2, 3, 4, 5, 6, 7, 10, 12, 14, 15, 20, 21, 28, 30, 35, 42, 60, 70, 84, 105, 140, 210, 420 24 1344 924 abundant, highly abundant, composite
421 1, 421 2 422 1 deficient, prime
422 1, 2, 211, 422 4 636 214 deficient, composite
423 1, 3, 9, 47, 141, 423 6 624 201 deficient, composite
424 1, 2, 4, 8, 53, 106, 212, 424 8 810 386 deficient, composite
425 1, 5, 17, 25, 85, 425 6 558 133 deficient, composite
426 1, 2, 3, 6, 71, 142, 213, 426 8 864 438 abundant, composite
427 1, 7, 61, 427 4 496 69 deficient, composite
428 1, 2, 4, 107, 214, 428 6 756 328 deficient, composite
429 1, 3, 11, 13, 33, 39, 143, 429 8 672 243 deficient, composite
430 1, 2, 5, 10, 43, 86, 215, 430 8 792 362 deficient, composite
431 1, 431 2 432 1 deficient, prime
432 1, 2, 3, 4, 6, 8, 9, 12, 16, 18, 24, 27, 36, 48, 54, 72, 108, 144, 216, 432 20 1240 808 abundant, composite
433 1, 433 2 434 1 deficient, prime
434 1, 2, 7, 14, 31, 62, 217, 434 8 768 334 deficient, composite
435 1, 3, 5, 15, 29, 87, 145, 435 8 720 285 deficient, composite
436 1, 2, 4, 109, 218, 436 6 770 334 deficient, composite
437 1, 19, 23, 437 4 480 43 deficient, composite
438 1, 2, 3, 6, 73, 146, 219, 438 8 888 450 abundant, composite
439 1, 439 2 440 1 deficient, prime
440 1, 2, 4, 5, 8, 10, 11, 20, 22, 40, 44, 55, 88, 110, 220, 440 16 1080 640 abundant, composite
441 1, 3, 7, 9, 21, 49, 63, 147, 441 9 741 300 deficient, composite
442 1, 2, 13, 17, 26, 34, 221, 442 8 756 314 deficient, composite
443 1, 443 2 444 1 deficient, prime
444 1, 2, 3, 4, 6, 12, 37, 74, 111, 148, 222, 444 12 1064 620 abundant, composite
445 1, 5, 89, 445 4 540 95 deficient, composite
446 1, 2, 223, 446 4 672 226 deficient, composite
447 1, 3, 149, 447 4 600 153 deficient, composite
448 1, 2, 4, 7, 8, 14, 16, 28, 32, 56, 64, 112, 224, 448 14 1016 568 abundant, composite
449 1, 449 2 450 1 deficient, prime
450 1, 2, 3, 5, 6, 9, 10, 15, 18, 25, 30, 45, 50, 75, 90, 150, 225, 450 18 1209 759 abundant, composite
451 1, 11, 41, 451 4 504 53 deficient, composite
452 1, 2, 4, 113, 226, 452 6 798 346 deficient, composite
453 1, 3, 151, 453 4 608 155 deficient, composite
454 1, 2, 227, 454 4 684 230 deficient, composite
455 1, 5, 7, 13, 35, 65, 91, 455 8 672 217 deficient, composite
456 1, 2, 3, 4, 6, 8, 12, 19, 24, 38, 57, 76, 114, 152, 228, 456 16 1200 744 abundant, composite
457 1, 457 2 458 1 deficient, prime
458 1, 2, 229, 458 4 690 232 deficient, composite
459 1, 3, 9, 17, 27, 51, 153, 459 8 720 261 deficient, composite
460 1, 2, 4, 5, 10, 20, 23, 46, 92, 115, 230, 460 12 1008 548 abundant, composite
461 1, 461 2 462 1 deficient, prime
462 1, 2, 3, 6, 7, 11, 14, 21, 22, 33, 42, 66, 77, 154, 231, 462 16 1152 690 abundant, composite
463 1, 463 2 464 1 deficient, prime
464 1, 2, 4, 8, 16, 29, 58, 116, 232, 464 10 930 466 abundant, composite
465 1, 3, 5, 15, 31, 93, 155, 465 8 768 303 deficient, composite
466 1, 2, 233, 466 4 702 236 deficient, composite
467 1, 467 2 468 1 deficient, prime
468 1, 2, 3, 4, 6, 9, 12, 13, 18, 26, 36, 39, 52, 78, 117, 156, 234, 468 18 1274 806 abundant, composite
469 1, 7, 67, 469 4 544 75 deficient, composite
470 1, 2, 5, 10, 47, 94, 235, 470 8 864 394 deficient, composite
471 1, 3, 157, 471 4 632 161 deficient, composite
472 1, 2, 4, 8, 59, 118, 236, 472 8 900 428 deficient, composite
473 1, 11, 43, 473 4 528 55 deficient, composite
474 1, 2, 3, 6, 79, 158, 237, 474 8 960 486 abundant, composite
475 1, 5, 19, 25, 95, 475 6 620 145 deficient, composite
476 1, 2, 4, 7, 14, 17, 28, 34, 68, 119, 238, 476 12 1008 532 abundant, composite
477 1, 3, 9, 53, 159, 477 6 702 225 deficient, composite
478 1, 2, 239, 478 4 720 242 deficient, composite
479 1, 479 2 480 1 deficient, prime
480 1, 2, 3, 4, 5, 6, 8, 10, 12, 15, 16, 20, 24, 30, 32, 40, 48, 60, 80, 96, 120, 160, 240, 480 24 1512 1032 abundant, highly abundant, composite
481 1, 13, 37, 481 4 532 51 deficient, composite
482 1, 2, 241, 482 4 726 244 deficient, composite
483 1, 3, 7, 21, 23, 69, 161, 483 8 768 285 deficient, composite
484 1, 2, 4, 11, 22, 44, 121, 242, 484 9 931 447 deficient, composite
485 1, 5, 97, 485 4 588 103 deficient, composite
486 1, 2, 3, 6, 9, 18, 27, 54, 81, 162, 243, 486 12 1092 606 abundant, composite
487 1, 487 2 488 1 deficient, prime
488 1, 2, 4, 8, 61, 122, 244, 488 8 930 442 deficient, composite
489 1, 3, 163, 489 4 656 167 deficient, composite
490 1, 2, 5, 7, 10, 14, 35, 49, 70, 98, 245, 490 12 1026 536 abundant, composite
491 1, 491 2 492 1 deficient, prime
492 1, 2, 3, 4, 6, 12, 41, 82, 123, 164, 246, 492 12 1176 684 abundant, composite
493 1, 17, 29, 493 4 540 47 deficient, composite
494 1, 2, 13, 19, 26, 38, 247, 494 8 840 346 deficient, composite
495 1, 3, 5, 9, 11, 15, 33, 45, 55, 99, 165, 495 12 936 441 deficient, composite
496 1, 2, 4, 8, 16, 31, 62, 124, 248, 496 10 992 496 perfect, composite
497 1, 7, 71, 497 4 576 79 deficient, composite
498 1, 2, 3, 6, 83, 166, 249, 498 8 1008 510 abundant, composite
499 1, 499 2 500 1 deficient, prime
500 1, 2, 4, 5, 10, 20, 25, 50, 100, 125, 250, 500 12 1092 592 abundant, composite

[edit] Divisors of the numbers 501 to 600

n Divisors d(n) σ(n) s(n) Notes
501 1, 3, 167, 501 4 672 171 deficient, composite
502 1, 2, 251, 502 4 756 254 deficient, composite
503 1, 503 2 504 1 deficient, prime
504 1, 2, 3, 4, 6, 7, 8, 9, 12, 14, 18, 21, 24, 28, 36, 42, 56, 63, 72, 84, 126, 168, 252, 504 24 1560 1056 abundant, highly abundant, composite
505 1, 5, 101, 505 4 612 107 deficient, composite
506 1, 2, 11, 22, 23, 46, 253, 506 8 864 358 deficient, composite
507 1, 3, 13, 39, 169, 507 6 732 225 deficient, composite
508 1, 2, 4, 127, 254, 508 6 896 388 deficient, composite
509 1, 509 2 510 1 deficient, prime
510 1, 2, 3, 5, 6, 10, 15, 17, 30, 34, 51, 85, 102, 170, 255, 510 16 1296 786 abundant, composite
511 1, 7, 73, 511 4 592 81 deficient, composite
512 1, 2, 4, 8, 16, 32, 64, 128, 256, 512 10 1023 511 deficient, composite
513 1, 3, 9, 19, 27, 57, 171, 513 8 800 287 deficient, composite
514 1, 2, 257, 514 4 774 260 deficient, composite
515 1, 5, 103, 515 4 624 109 deficient, composite
516 1, 2, 3, 4, 6, 12, 43, 86, 129, 172, 258, 516 12 1232 716 abundant, composite
517 1, 11, 47, 517 4 576 59 deficient, composite
518 1, 2, 7, 14, 37, 74, 259, 518 8 912 394 deficient, composite
519 1, 3, 173, 519 4 696 177 deficient, composite
520 1, 2, 4, 5, 8, 10, 13, 20, 26, 40, 52, 65, 104, 130, 260, 520 16 1260 740 abundant, composite
n Divisors d(n) σ(n) s(n) Notes
521 1, 521 2 522 1 deficient, prime
522 1, 2, 3, 6, 9, 18, 29, 58, 87, 174, 261, 522 12 1170 648 abundant, composite
523 1, 523 2 524 1 deficient, prime
524 1, 2, 4, 131, 262, 524 6 924 400 deficient, composite
525 1, 3, 5, 7, 15, 21, 25, 35, 75, 105, 175, 525 12 992 467 deficient, composite
526 1, 2, 263, 526 4 792 266 deficient, composite
527 1, 17, 31, 527 4 576 49 deficient, composite
528 1, 2, 3, 4, 6, 8, 11, 12, 16, 22, 24, 33, 44, 48, 66, 88, 132, 176, 264, 528 20 1488 960 abundant, composite
529 1, 23, 529 3 553 24 deficient, composite
530 1, 2, 5, 10, 53, 106, 265, 530 8 972 442 deficient, composite
531 1, 3, 9, 59, 177, 531 6 780 249 deficient, composite
532 1, 2, 4, 7, 14, 19, 28, 38, 76, 133, 266, 532 12 1120 588 abundant, composite
533 1, 13, 41, 533 4 588 55 deficient, composite
534 1, 2, 3, 6, 89, 178, 267, 534 8 1080 546 abundant, composite
535 1, 5, 107, 535 4 648 113 deficient, composite
536 1, 2, 4, 8, 67, 134, 268, 536 8 1020 484 deficient, composite
537 1, 3, 179, 537 4 720 183 deficient, composite
538 1, 2, 269, 538 4 810 272 deficient, composite
539 1, 7, 11, 49, 77, 539 6 684 145 deficient, composite
540 1, 2, 3, 4, 5, 6, 9, 10, 12, 15, 18, 20, 27, 30, 36, 45, 54, 60, 90, 108, 135, 180, 270, 540 24 1680 1140 abundant, highly abundant, composite
n Divisors d(n) σ(n) s(n) Notes
541 1, 541 2 542 1 deficient, prime
542 1, 2, 271, 542 4 816 274 deficient, composite
543 1, 3, 181, 543 4 728 185 deficient, composite
544 1, 2, 4, 8, 16, 17, 32, 34, 68, 136, 272, 544 12 1134 590 abundant, composite
545 1, 5, 109, 545 4 660 115 deficient, composite
546 1, 2, 3, 6, 7, 13, 14, 21, 26, 39, 42, 78, 91, 182, 273, 546 16 1344 798 abundant, composite
547 1, 547 2 548 1 deficient, prime
548 1, 2, 4, 137, 274, 548 6 966 418 deficient, composite
549 1, 3, 9, 61, 183, 549 6 806 257 deficient, composite
550 1, 2, 5, 10, 11, 22, 25, 50, 55, 110, 275, 550 12 1116 566 abundant, composite
551 1, 19, 29, 551 4 600 49 deficient, composite
552 1, 2, 3, 4, 6, 8, 12, 23, 24, 46, 69, 92, 138, 184, 276, 552 16 1440 888 abundant, composite
553 1, 7, 79, 553 4 640 87 deficient, composite
554 1, 2, 277, 554 4 834 280 deficient, composite
555 1, 3, 5, 15, 37, 111, 185, 555 8 912 357 deficient, composite
556 1, 2, 4, 139, 278, 556 6 980 424 deficient, composite
557 1, 557 2 558 1 deficient, prime
558 1, 2, 3, 6, 9, 18, 31, 62, 93, 186, 279, 558 12 1248 690 abundant, composite
559 1, 13, 43, 559 4 616 57 deficient, composite
560 1, 2, 4, 5, 7, 8, 10, 14, 16, 20, 28, 35, 40, 56, 70, 80, 112, 140, 280, 560 20 1488 928 abundant, composite
n Divisors d(n) σ(n) s(n) Notes
561 1, 3, 11, 17, 33, 51, 187, 561 8 864 303 deficient, composite
562 1, 2, 281, 562 4 846 284 deficient, composite
563 1, 563 2 564 1 deficient, prime
564 1, 2, 3, 4, 6, 12, 47, 94, 141, 188, 282, 564 12 1344 780 abundant, composite
565 1, 5, 113, 565 4 684 119 deficient, composite
566 1, 2, 283, 566 4 852 286 deficient, composite
567 1, 3, 7, 9, 21, 27, 63, 81, 189, 567 10 968 401 deficient, composite
568 1, 2, 4, 8, 71, 142, 284, 568 8 1080 512 deficient, composite
569 1, 569 2 570 1 deficient, prime
570 1, 2, 3, 5, 6, 10, 15, 19, 30, 38, 57, 95, 114, 190, 285, 570 16 1440 870 abundant, composite
571 1, 571 2 572 1 deficient, prime
572 1, 2, 4, 11, 13, 22, 26, 44, 52, 143, 286, 572 12 1176 604 abundant, composite
573 1, 3, 191, 573 4 768 195 deficient, composite
574 1, 2, 7, 14, 41, 82, 287, 574 8 1008 434 deficient, composite
575 1, 5, 23, 25, 115, 575 6 744 169 deficient, composite
576 1, 2, 3, 4, 6, 8, 9, 12, 16, 18, 24, 32, 36, 48, 64, 72, 96, 144, 192, 288, 576 21 1651 1075 abundant, composite
577 1, 577 2 578 1 deficient, prime
578 1, 2, 17, 34, 289, 578 6 921 343 deficient, composite
579 1, 3, 193, 579 4 776 197 deficient, composite
580 1, 2, 4, 5, 10, 20, 29, 58, 116, 145, 290, 580 12 1260 680 abundant, composite
n Divisors d(n) σ(n) s(n) Notes
581 1, 7, 83, 581 4 672 91 deficient, composite
582 1, 2, 3, 6, 97, 194, 291, 582 8 1176 594 abundant, composite
583 1, 11, 53, 583 4 648 65 deficient, composite
584 1, 2, 4, 8, 73, 146, 292, 584 8 1110 526 deficient, composite
585 1, 3, 5, 9, 13, 15, 39, 45, 65, 117, 195, 585 12 1092 507 deficient, composite
586 1, 2, 293, 586 4 882 296 deficient, composite
587 1, 587 2 588 1 deficient, prime
588 1, 2, 3, 4, 6, 7, 12, 14, 21, 28, 42, 49, 84, 98, 147, 196, 294, 588 18 1596 1008 abundant, composite
589 1, 19, 31, 589 4 640 51 deficient, composite
590 1, 2, 5, 10, 59, 118, 295, 590 8 1080 490 deficient, composite
591 1, 3, 197, 591 4 792 201 deficient, composite
592 1, 2, 4, 8, 16, 37, 74, 148, 296, 592 10 1178 586 deficient, composite
593 1, 593 2 594 1 deficient, prime
594 1, 2, 3, 6, 9, 11, 18, 22, 27, 33, 54, 66, 99, 198, 297, 594 16 1440 846 abundant, composite
595 1, 5, 7, 17, 35, 85, 119, 595 8 864 269 deficient, composite
596 1, 2, 4, 149, 298, 596 6 1050 454 deficient, composite
597 1, 3, 199, 597 4 800 203 deficient, composite
598 1, 2, 13, 23, 26, 46, 299, 598 8 1008 410 deficient, composite
599 1, 599 2 600 1 deficient, prime
600 1, 2, 3, 4, 5, 6, 8, 10, 12, 15, 20, 24, 25, 30, 40, 50, 60, 75, 100, 120, 150, 200, 300, 600 24 1860 1260 abundant, highly abundant, composite

[edit] Divisors of the numbers 601 to 700

n Divisors d(n) σ(n) s(n) Notes
601 1, 601 2 602 1 deficient, prime
602 1, 2, 7, 14, 43, 86, 301, 602 8 1056 454 deficient, composite
603 1, 3, 9, 67, 201, 603 6 884 281 deficient, composite
604 1, 2, 4, 151, 302, 604 6 1064 460 deficient, composite
605 1, 5, 11, 55, 121, 605 6 798 193 deficient, composite
606 1, 2, 3, 6, 101, 202, 303, 606 8 1224 618 abundant, composite
607 1, 607 2 608 1 deficient, prime
608 1, 2, 4, 8, 16, 19, 32, 38, 76, 152, 304, 608 12 1260 652 abundant, composite
609 1, 3, 7, 21, 29, 87, 203, 609 8 960 351 deficient, composite
610 1, 2, 5, 10, 61, 122, 305, 610 8 1116 506 deficient, composite
611 1, 13, 47, 611 4 672 61 deficient, composite
612 1, 2, 3, 4, 6, 9, 12, 17, 18, 34, 36, 51, 68, 102, 153, 204, 306, 612 18 1638 1026 abundant, composite
613 1, 613 2 614 1 deficient, prime
614 1, 2, 307, 614 4 924 310 deficient, composite
615 1, 3, 5, 15, 41, 123, 205, 615 8 1008 393 deficient, composite
616 1, 2, 4, 7, 8, 11, 14, 22, 28, 44, 56, 77, 88, 154, 308, 616 16 1440 824 abundant, composite
617 1, 617 2 618 1 deficient, prime
618 1, 2, 3, 6, 103, 206, 309, 618 8 1248 630 abundant, composite
619 1, 619 2 620 1 deficient, prime
620 1, 2, 4, 5, 10, 20, 31, 62, 124, 155, 310, 620 12 1344 724 abundant, composite
n Divisors d(n) σ(n) s(n) Notes
621 1, 3, 9, 23, 27, 69, 207, 621 8 960 339 deficient, composite
622 1, 2, 311, 622 4 936 314 deficient, composite
623 1, 7, 89, 623 4 720 97 deficient, composite
624 1, 2, 3, 4, 6, 8, 12, 13, 16, 24, 26, 39, 48, 52, 78, 104, 156, 208, 312, 624 20 1736 1112 abundant, composite
625 1, 5, 25, 125, 625 5 781 156 deficient, composite
626 1, 2, 313, 626 4 942 316 deficient, composite
627 1, 3, 11, 19, 33, 57, 209, 627 8 960 333 deficient, composite
628 1, 2, 4, 157, 314, 628 6 1106 478 deficient, composite
629 1, 17, 37, 629 4 684 55 deficient, composite
630 1, 2, 3, 5, 6, 7, 9, 10, 14, 15, 18, 21, 30, 35, 42, 45, 63, 70, 90, 105, 126, 210, 315, 630 24 1872 1242 abundant, highly abundant, composite
631 1, 631 2 632 1 deficient, prime
632 1, 2, 4, 8, 79, 158, 316, 632 8 1200 568 deficient, composite
633 1, 3, 211, 633 4 848 215 deficient, composite
634 1, 2, 317, 634 4 954 320 deficient, composite
635 1, 5, 127, 635 4 768 133 deficient, composite
636 1, 2, 3, 4, 6, 12, 53, 106, 159, 212, 318, 636 12 1512 876 abundant, composite
637 1, 7, 13, 49, 91, 637 6 798 161 deficient, composite
638 1, 2, 11, 22, 29, 58, 319, 638 8 1080 442 deficient, composite
639 1, 3, 9, 71, 213, 639 6 936 297 deficient, composite
640 1, 2, 4, 5, 8, 10, 16, 20, 32, 40, 64, 80, 128, 160, 320, 640 16 1530 890 abundant, composite
n Divisors d(n) σ(n) s(n) Notes
641 1, 641 2 642 1 deficient, prime
642 1, 2, 3, 6, 107, 214, 321, 642 8 1296 654 abundant, composite
643 1, 643 2 644 1 deficient, prime
644 1, 2, 4, 7, 14, 23, 28, 46, 92, 161, 322, 644 12 1344 700 abundant, composite
645 1, 3, 5, 15, 43, 129, 215, 645 8 1056 411 deficient, composite
646 1, 2, 17, 19, 34, 38, 323, 646 8 1080 434 deficient, composite
647 1, 647 2 648 1 deficient, prime
648 1, 2, 3, 4, 6, 8, 9, 12, 18, 24, 27, 36, 54, 72, 81, 108, 162, 216, 324, 648 20 1815 1167 abundant, composite
649 1, 11, 59, 649 4 720 71 deficient, composite
650 1, 2, 5, 10, 13, 25, 26, 50, 65, 130, 325, 650 12 1302 652 abundant, composite
651 1, 3, 7, 21, 31, 93, 217, 651 8 1024 373 deficient, composite
652 1, 2, 4, 163, 326, 652 6 1148 496 deficient, composite
653 1, 653 2 654 1 deficient, prime
654 1, 2, 3, 6, 109, 218, 327, 654 8 1320 666 abundant, composite
655 1, 5, 131, 655 4 792 137 deficient, composite
656 1, 2, 4, 8, 16, 41, 82, 164, 328, 656 10 1302 646 deficient, composite
657 1, 3, 9, 73, 219, 657 6 962 305 deficient, composite
658 1, 2, 7, 14, 47, 94, 329, 658 8 1152 494 deficient, composite
659 1, 659 2 660 1 deficient, prime
660 1, 2, 3, 4, 5, 6, 10, 11, 12, 15, 20, 22, 30, 33, 44, 55, 60, 66, 110, 132, 165, 220, 330, 660 24 2016 1356 abundant, highly abundant, composite
n Divisors d(n) σ(n) s(n) Notes
661 1, 661 2 662 1 deficient, prime
662 1, 2, 331, 662 4 996 334 deficient, composite
663 1, 3, 13, 17, 39, 51, 221, 663 8 1008 345 deficient, composite
664 1, 2, 4, 8, 83, 166, 332, 664 8 1260 596 deficient, composite
665 1, 5, 7, 19, 35, 95, 133, 665 8 960 295 deficient, composite
666 1, 2, 3, 6, 9, 18, 37, 74, 111, 222, 333, 666 12 1482 816 abundant, composite
667 1, 23, 29, 667 4 720 53 deficient, composite
668 1, 2, 4, 167, 334, 668 6 1176 508 deficient, composite
669 1, 3, 223, 669 4 896 227 deficient, composite
670 1, 2, 5, 10, 67, 134, 335, 670 8 1224 554 deficient, composite
671 1, 11, 61, 671 4 744 73 deficient, composite
672 1, 2, 3, 4, 6, 7, 8, 12, 14, 16, 21, 24, 28, 32, 42, 48, 56, 84, 96, 112, 168, 224, 336, 672 24 2016 1344 abundant, composite
673 1, 673 2 674 1 deficient, prime
674 1, 2, 337, 674 4 1014 340 deficient, composite
675 1, 3, 5, 9, 15, 25, 27, 45, 75, 135, 225, 675 12 1240 565 deficient, composite
676 1, 2, 4, 13, 26, 52, 169, 338, 676 9 1281 605 deficient, composite
677 1, 677 2 678 1 deficient, prime
678 1, 2, 3, 6, 113, 226, 339, 678 8 1368 690 abundant, composite
679 1, 7, 97, 679 4 784 105 deficient, composite
680 1, 2, 4, 5, 8, 10, 17, 20, 34, 40, 68, 85, 136, 170, 340, 680 16 1620 940 abundant, composite
n Divisors d(n) σ(n) s(n) Notes
681 1, 3, 227, 681 4 912 231 deficient, composite
682 1, 2, 11, 22, 31, 62, 341, 682 8 1152 470 deficient, composite
683 1, 683 2 684 1 deficient, prime
684 1, 2, 3, 4, 6, 9, 12, 18, 19, 36, 38, 57, 76, 114, 171, 228, 342, 684 18 1820 1136 abundant, composite
685 1, 5, 137, 685 4 828 143 deficient, composite
686 1, 2, 7, 14, 49, 98, 343, 686 8 1200 514 deficient, composite
687 1, 3, 229, 687 4 920 233 deficient, composite
688 1, 2, 4, 8, 16, 43, 86, 172, 344, 688 10 1364 676 deficient, composite
689 1, 13, 53, 689 4 756 67 deficient, composite
690 1, 2, 3, 5, 6, 10, 15, 23, 30, 46, 69, 115, 138, 230, 345, 690 16 1728 1038 abundant, composite
691 1, 691 2 692 1 deficient, prime
692 1, 2, 4, 173, 346, 692 6 1218 526 deficient, composite
693 1, 3, 7, 9, 11, 21, 33, 63, 77, 99, 231, 693 12 1248 555 deficient, composite
694 1, 2, 347, 694 4 1044 350 deficient, composite
695 1, 5, 139, 695 4 840 145 deficient, composite
696 1, 2, 3, 4, 6, 8, 12, 24, 29, 58, 87, 116, 174, 232, 348, 696 16 1800 1104 abundant, composite
697 1, 17, 41, 697 4 756 59 deficient, composite
698 1, 2, 349, 698 4 1050 352 deficient, composite
699 1, 3, 233, 699 4 936 237 deficient, composite
700 1, 2, 4, 5, 7, 10, 14, 20, 25, 28, 35, 50, 70, 100, 140, 175, 350, 700 18 1736 1036 abundant, composite

[edit] Divisors of the numbers 701 to 800

n Divisors d(n) σ(n) s(n) Notes
701 1, 701 2 702 1 deficient, prime
702 1, 2, 3, 6, 9, 13, 18, 26, 27, 39, 54, 78, 117, 234, 351, 702 16 1680 978 abundant, composite
703 1, 19, 37, 703 4 760 57 deficient, composite
704 1, 2, 4, 8, 11, 16, 22, 32, 44, 64, 88, 176, 352, 704 14 1524 820 abundant, composite
705 1, 3, 5, 15, 47, 141, 235, 705 8 1152 447 deficient, composite
706 1, 2, 353, 706 4 1062 356 deficient, composite
707 1, 7, 101, 707 4 816 109 deficient, composite
708 1, 2, 3, 4, 6, 12, 59, 118, 177, 236, 354, 708 12 1680 972 abundant, composite
709 1, 709 2 710 1 deficient, prime
710 1, 2, 5, 10, 71, 142, 355, 710 8 1296 586 deficient, composite
711 1, 3, 9, 79, 237, 711 6 1040 329 deficient, composite
712 1, 2, 4, 8, 89, 178, 356, 712 8 1350 638 deficient, composite
713 1, 23, 31, 713 4 768 55 deficient, composite
714 1, 2, 3, 6, 7, 14, 17, 21, 34, 42, 51, 102, 119, 238, 357, 714 16 1728 1014 abundant, composite
715 1, 5, 11, 13, 55, 65, 143, 715 8 1008 293 deficient, composite
716 1, 2, 4, 179, 358, 716 6 1260 544 deficient, composite
717 1, 3, 239, 717 4 960 243 deficient, composite
718 1, 2, 359, 718 4 1080 362 deficient, composite
719 1, 719 2 720 1 deficient, prime
720 1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 15, 16, 18, 20, 24, 30, 36, 40, 45, 48, 60, 72, 80, 90, 120, 144, 180, 240, 360, 720 30 2418 1698 abundant, highly abundant, superabundant, composite, highly composite
n Divisors d(n) σ(n) s(n) Notes
721 1, 7, 103, 721 4 832 111 deficient, composite
722 1, 2, 19, 38, 361, 722 6 1143 421 deficient, composite
723 1, 3, 241, 723 4 968 245 deficient, composite
724 1, 2, 4, 181, 362, 724 6 1274 550 deficient, composite
725 1, 5, 25, 29, 145, 725 6 930 205 deficient, composite
726 1, 2, 3, 6, 11, 22, 33, 66, 121, 242, 363, 726 12 1596 870 abundant, composite
727 1, 727 2 728 1 deficient, prime
728 1, 2, 4, 7, 8, 13, 14, 26, 28, 52, 56, 91, 104, 182, 364, 728 16 1680 952 abundant, composite
729 1, 3, 9, 27, 81, 243, 729 7 1093 364 deficient, composite
730 1, 2, 5, 10, 73, 146, 365, 730 8 1332 602 deficient, composite
731 1, 17, 43, 731 4 792 61 deficient, composite
732 1, 2, 3, 4, 6, 12, 61, 122, 183, 244, 366, 732 12 1736 1004 abundant, composite
733 1, 733 2 734 1 deficient, prime
734 1, 2, 367, 734 4 1104 370 deficient, composite
735 1, 3, 5, 7, 15, 21, 35, 49, 105, 147, 245, 735 12 1368 633 deficient, composite
736 1, 2, 4, 8, 16, 23, 32, 46, 92, 184, 368, 736 12 1512 776 abundant, composite
737 1, 11, 67, 737 4 816 79 deficient, composite
738 1, 2, 3, 6, 9, 18, 41, 82, 123, 246, 369, 738 12 1638 900 abundant, composite
739 1, 739 2 740 1 deficient, prime
740 1, 2, 4, 5, 10, 20, 37, 74, 148, 185, 370, 740 12 1596 856 abundant, composite
n Divisors d(n) σ(n) s(n) Notes
741 1, 3, 13, 19, 39, 57, 247, 741 8 1120 379 deficient, composite
742 1, 2, 7, 14, 53, 106, 371, 742 8 1296 554 deficient, composite
743 1, 743 2 744 1 deficient, prime
744 1, 2, 3, 4, 6, 8, 12, 24, 31, 62, 93, 124, 186, 248, 372, 744 16 1920 1176 abundant, composite
745 1, 5, 149, 745 4 900 155 deficient, composite
746 1, 2, 373, 746 4 1122 376 deficient, composite
747 1, 3, 9, 83, 249, 747 6 1092 345 deficient, composite
748 1, 2, 4, 11, 17, 22, 34, 44, 68, 187, 374, 748 12 1512 764 abundant, composite
749 1, 7, 107, 749 4 864 115 deficient, composite
750 1, 2, 3, 5, 6, 10, 15, 25, 30, 50, 75, 125, 150, 250, 375, 750 16 1872 1122 abundant, composite
751 1, 751 2 752 1 deficient, prime
752 1, 2, 4, 8, 16, 47, 94, 188, 376, 752 10 1488 736 deficient, composite
753 1, 3, 251, 753 4 1008 255 deficient, composite
754 1, 2, 13, 26, 29, 58, 377, 754 8 1260 506 deficient, composite
755 1, 5, 151, 755 4 912 157 deficient, composite
756 1, 2, 3, 4, 6, 7, 9, 12, 14, 18, 21, 27, 28, 36, 42, 54, 63, 84, 108, 126, 189, 252, 378, 756 24 2240 1484 abundant, composite
757 1, 757 2 758 1 deficient, prime
758 1, 2, 379, 758 4 1140 382 deficient, composite
759 1, 3, 11, 23, 33, 69, 253, 759 8 1152 393 deficient, composite
760 1, 2, 4, 5, 8, 10, 19, 20, 38, 40, 76, 95, 152, 190, 380, 760 16 1800 1040 abundant, composite
n Divisors d(n) σ(n) s(n) Notes
761 1, 761 2 762 1 deficient, prime
762 1, 2, 3, 6, 127, 254, 381, 762 8 1536 774 abundant, composite
763 1, 7, 109, 763 4 880 117 deficient, composite
764 1, 2, 4, 191, 382, 764 6 1344 580 deficient, composite
765 1, 3, 5, 9, 15, 17, 45, 51, 85, 153, 255, 765 12 1404 639 deficient, composite
766 1, 2, 383, 766 4 1152 386 deficient, composite
767 1, 13, 59, 767 4 840 73 deficient, composite
768 1, 2, 3, 4, 6, 8, 12, 16, 24, 32, 48, 64, 96, 128, 192, 256, 384, 768 18 2044 1276 abundant, composite
769 1, 769 2 770 1 deficient, prime
770 1, 2, 5, 7, 10, 11, 14, 22, 35, 55, 70, 77, 110, 154, 385, 770 16 1728 958 abundant, composite
771 1, 3, 257, 771 4 1032 261 deficient, composite
772 1, 2, 4, 193, 386, 772 6 1358 586 deficient, composite
773 1, 773 2 774 1 deficient, prime
774 1, 2, 3, 6, 9, 18, 43, 86, 129, 258, 387, 774 12 1716 942 abundant, composite
775 1, 5, 25, 31, 155, 775 6 992 217 deficient, composite
776 1, 2, 4, 8, 97, 194, 388, 776 8 1470 694 deficient, composite
777 1, 3, 7, 21, 37, 111, 259, 777 8 1216 439 deficient, composite
778 1, 2, 389, 778 4 1170 392 deficient, composite
779 1, 19, 41, 779 4 840 61 deficient, composite
780 1, 2, 3, 4, 5, 6, 10, 12, 13, 15, 20, 26, 30, 39, 52, 60, 65, 78, 130, 156, 195, 260, 390, 780 24 2352 1572 abundant, composite
n Divisors d(n) σ(n) s(n) Notes
781 1, 11, 71, 781 4 864 83 deficient, composite
782 1, 2, 17, 23, 34, 46, 391, 782 8 1296 514 deficient, composite
783 1, 3, 9, 27, 29, 87, 261, 783 8 1200 417 deficient, composite
784 1, 2, 4, 7, 8, 14, 16, 28, 49, 56, 98, 112, 196, 392, 784 15 1767 983 abundant, composite
785 1, 5, 157, 785 4 948 163 deficient, composite
786 1, 2, 3, 6, 131, 262, 393, 786 8 1584 798 abundant, composite
787 1, 787 2 788 1 deficient, prime
788 1, 2, 4, 197, 394, 788 6 1386 598 deficient, composite
789 1, 3, 263, 789 4 1056 267 deficient, composite
790 1, 2, 5, 10, 79, 158, 395, 790 8 1440 650 deficient, composite
791 1, 7, 113, 791 4 912 121 deficient, composite
792 1, 2, 3, 4, 6, 8, 9, 11, 12, 18, 22, 24, 33, 36, 44, 66, 72, 88, 99, 132, 198, 264, 396, 792 24 2340 1548 abundant, composite
793 1, 13, 61, 793 4 868 75 deficient, composite
794 1, 2, 397, 794 4 1194 400 deficient, composite
795 1, 3, 5, 15, 53, 159, 265, 795 8 1296 501 deficient, composite
796 1, 2, 4, 199, 398, 796 6 1400 604 deficient, composite
797 1, 797 2 798 1 deficient, prime
798 1, 2, 3, 6, 7, 14, 19, 21, 38, 42, 57, 114, 133, 266, 399, 798 16 1920 1122 abundant, composite
799 1, 17, 47, 799 4 864 65 deficient, composite
800 1, 2, 4, 5, 8, 10, 16, 20, 25, 32, 40, 50, 80, 100, 160, 200, 400, 800 18 1953 1153 abundant, composite

[edit] Divisors of the numbers 801 to 900

n Divisors d(n) σ(n) s(n) Notes
801 1, 3, 9, 89, 267, 801 6 1170 369 deficient, composite
802 1, 2, 401, 802 4 1206 404 deficient, composite
803 1, 11, 73, 803 4 888 85 deficient, composite
804 1, 2, 3, 4, 6, 12, 67, 134, 201, 268, 402, 804 12 1904 1100 abundant, composite
805 1, 5, 7, 23, 35, 115, 161, 805 8 1152 347 deficient, composite
806 1, 2, 13, 26, 31, 62, 403, 806 8 1344 538 deficient, composite
807 1, 3, 269, 807 4 1080 273 deficient, composite
808 1, 2, 4, 8, 101, 202, 404, 808 8 1530 722 deficient, composite
809 1, 809 2 810 1 deficient, prime
810 1, 2, 3, 5, 6, 9, 10, 15, 18, 27, 30, 45, 54, 81, 90, 135, 162, 270, 405, 810 20 2178 1368 abundant, composite
811 1, 811 2 812 1 deficient, prime
812 1, 2, 4, 7, 14, 28, 29, 58, 116, 203, 406, 812 12 1680 868 abundant, composite
813 1, 3, 271, 813 4 1088 275 deficient, composite
814 1, 2, 11, 22, 37, 74, 407, 814 8 1368 554 deficient, composite
815 1, 5, 163, 815 4 984 169 deficient, composite
816 1, 2, 3, 4, 6, 8, 12, 16, 17, 24, 34, 48, 51, 68, 102, 136, 204, 272, 408, 816 20 2232 1416 abundant, composite
817 1, 19, 43, 817 4 880 63 deficient, composite
818 1, 2, 409, 818 4 1230 412 deficient, composite
819 1, 3, 7, 9, 13, 21, 39, 63, 91, 117, 273, 819 12 1456 637 deficient, composite
820 1, 2, 4, 5, 10, 20, 41, 82, 164, 205, 410, 820 12 1764 944 abundant, composite
n Divisors d(n) σ(n) s(n) Notes
821 1, 821 2 822 1 deficient, prime
822 1, 2, 3, 6, 137, 274, 411, 822 8 1656 834 abundant, composite
823 1, 823 2 824 1 deficient, prime
824 1, 2, 4, 8, 103, 206, 412, 824 8 1560 736 deficient, composite
825 1, 3, 5, 11, 15, 25, 33, 55, 75, 165, 275, 825 12 1488 663 deficient, composite
826 1, 2, 7, 14, 59, 118, 413, 826 8 1440 614 deficient, composite
827 1, 827 2 828 1 deficient, prime
828 1, 2, 3, 4, 6, 9, 12, 18, 23, 36, 46, 69, 92, 138, 207, 276, 414, 828 18 2184 1356 abundant, composite
829 1, 829 2 830 1 deficient, prime
830 1, 2, 5, 10, 83, 166, 415, 830 8 1512 682 deficient, composite
831 1, 3, 277, 831 4 1112 281 deficient, composite
832 1, 2, 4, 8, 13, 16, 26, 32, 52, 64, 104, 208, 416, 832 14 1778 946 abundant, composite
833 1, 7, 17, 49, 119, 833 6 1026 193 deficient, composite
834 1, 2, 3, 6, 139, 278, 417, 834 8 1680 846 abundant, composite
835 1, 5, 167, 835 4 1008 173 deficient, composite
836 1, 2, 4, 11, 19, 22, 38, 44, 76, 209, 418, 836 12 1680 844 abundant, composite
837 1, 3, 9, 27, 31, 93, 279, 837 8 1280 443 deficient, composite
838 1, 2, 419, 838 4 1260 422 deficient, composite
839 1, 839 2 840 1 deficient, prime
840 1, 2, 3, 4, 5, 6, 7, 8, 10, 12, 14, 15, 20, 21, 24, 28, 30, 35, 40, 42, 56, 60, 70, 84, 105, 120, 140, 168, 210, 280, 420, 840 32 2880 2040 abundant, highly abundant, superabundant, composite, highly composite
n Divisors d(n) σ(n) s(n) Notes
841 1, 29, 841 3 871 30 deficient, composite
842 1, 2, 421, 842 4 1266 424 deficient, composite
843 1, 3, 281, 843 4 1128 285 deficient, composite
844 1, 2, 4, 211, 422, 844 6 1484 640 deficient, composite
845 1, 5, 13, 65, 169, 845 6 1098 253 deficient, composite
846 1, 2, 3, 6, 9, 18, 47, 94, 141, 282, 423, 846 12 1872 1026 abundant, composite
847 1, 7, 11, 77, 121, 847 6 1064 217 deficient, composite
848 1, 2, 4, 8, 16, 53, 106, 212, 424, 848 10 1674 826 deficient, composite
849 1, 3, 283, 849 4 1136 287 deficient, composite
850 1, 2, 5, 10, 17, 25, 34, 50, 85, 170, 425, 850 12 1674 824 deficient, composite
851 1, 23, 37, 851 4 912 61 deficient, composite
852 1, 2, 3, 4, 6, 12, 71, 142, 213, 284, 426, 852 12 2016 1164 abundant, composite
853 1, 853 2 854 1 deficient, prime
854 1, 2, 7, 14, 61, 122, 427, 854 8 1488 634 deficient, composite
855 1, 3, 5, 9, 15, 19, 45, 57, 95, 171, 285, 855 12 1560 705 deficient, composite
856 1, 2, 4, 8, 107, 214, 428, 856 8 1620 764 deficient, composite
857 1, 857 2 858 1 deficient, prime
858 1, 2, 3, 6, 11, 13, 22, 26, 33, 39, 66, 78, 143, 286, 429, 858 16 2016 1158 abundant, composite
859 1, 859 2 860 1 deficient, prime
860 1, 2, 4, 5, 10, 20, 43, 86, 172, 215, 430, 860 12 1848 988 abundant, composite
n Divisors d(n) σ(n) s(n) Notes
861 1, 3, 7, 21, 41, 123, 287, 861 8 1344 483 deficient, composite
862 1, 2, 431, 862 4 1296 434 deficient, composite
863 1, 863 2 864 1 deficient, prime
864 1, 2, 3, 4, 6, 8, 9, 12, 16, 18, 24, 27, 32, 36, 48, 54, 72, 96, 108, 144, 216, 288, 432, 864 24 2520 1656 abundant, composite
865 1, 5, 173, 865 4 1044 179 deficient, composite
866 1, 2, 433, 866 4 1302 436 deficient, composite
867 1, 3, 17, 51, 289, 867 6 1228 361 deficient, composite
868 1, 2, 4, 7, 14, 28, 31, 62, 124, 217, 434, 868 12 1792 924 abundant, composite
869 1, 11, 79, 869 4 960 91 deficient, composite
870 1, 2, 3, 5, 6, 10, 15, 29, 30, 58, 87, 145, 174, 290, 435, 870 16 2160 1290 abundant, composite
871 1, 13, 67, 871 4 952 81 deficient, composite
872 1, 2, 4, 8, 109, 218, 436, 872 8 1650 778 deficient, composite
873 1, 3, 9, 97, 291, 873 6 1274 401 deficient, composite
874 1, 2, 19, 23, 38, 46, 437, 874 8 1440 566 deficient, composite
875 1, 5, 7, 25, 35, 125, 175, 875 8 1248 373 deficient, composite
876 1, 2, 3, 4, 6, 12, 73, 146, 219, 292, 438, 876 12 2072 1196 abundant, composite
877 1, 877 2 878 1 deficient, prime
878 1, 2, 439, 878 4 1320 442 deficient, composite
879 1, 3, 293, 879 4 1176 297 deficient, composite
880 1, 2, 4, 5, 8, 10, 11, 16, 20, 22, 40, 44, 55, 80, 88, 110, 176, 220, 440, 880 20 2232 1352 abundant, composite
n Divisors d(n) σ(n) s(n) Notes
881 1, 881 2 882 1 deficient, prime
882 1, 2, 3, 6, 7, 9, 14, 18, 21, 42, 49, 63, 98, 126, 147, 294, 441, 882 18 2223 1341 abundant, composite
883 1, 883 2 884 1 deficient, prime
884 1, 2, 4, 13, 17, 26, 34, 52, 68, 221, 442, 884 12 1764 880 deficient, composite
885 1, 3, 5, 15, 59, 177, 295, 885 8 1440 555 deficient, composite
886 1, 2, 443, 886 4 1332 446 deficient, composite
887 1, 887 2 888 1 deficient, prime
888 1, 2, 3, 4, 6, 8, 12, 24, 37, 74, 111, 148, 222, 296, 444, 888 16 2280 1392 abundant, composite
889 1, 7, 127, 889 4 1024 135 deficient, composite
890 1, 2, 5, 10, 89, 178, 445, 890 8 1620 730 deficient, composite
891 1, 3, 9, 11, 27, 33, 81, 99, 297, 891 10 1452 561 deficient, composite
892 1, 2, 4, 223, 446, 892 6 1568 676 deficient, composite
893 1, 19, 47, 893 4 960 67 deficient, composite
894 1, 2, 3, 6, 149, 298, 447, 894 8 1800 906 abundant, composite
895 1, 5, 179, 895 4 1080 185 deficient, composite
896 1, 2, 4, 7, 8, 14, 16, 28, 32, 56, 64, 112, 128, 224, 448, 896 16 2040 1144 abundant, composite
897 1, 3, 13, 23, 39, 69, 299, 897 8 1344 447 deficient, composite
898 1, 2, 449, 898 4 1350 452 deficient, composite
899 1, 29, 31, 899 4 960 61 deficient, composite
900 1, 2, 3, 4, 5, 6, 9, 10, 12, 15, 18, 20, 25, 30, 36, 45, 50, 60, 75, 90, 100, 150, 180, 225, 300, 450, 900 27 2821 1921 abundant, composite

[edit] Divisors of the numbers 901 to 1000

n Divisors d(n) σ(n) s(n) Notes
901 1, 17, 53, 901 4 972 71 deficient, composite
902 1, 2, 11, 22, 41, 82, 451, 902 8 1512 610 deficient, composite
903 1, 3, 7, 21, 43, 129, 301, 903 8 1408 505 deficient, composite
904 1, 2, 4, 8, 113, 226, 452, 904 8 1710 806 deficient, composite
905 1, 5, 181, 905 4 1092 187 deficient, composite
906 1, 2, 3, 6, 151, 302, 453, 906 8 1824 918 abundant, composite
907 1, 907 2 908 1 deficient, prime
908 1, 2, 4, 227, 454, 908 6 1596 688 deficient, composite
909 1, 3, 9, 101, 303, 909 6 1326 417 deficient, composite
910 1, 2, 5, 7, 10, 13, 14, 26, 35, 65, 70, 91, 130, 182, 455, 910 16 2016 1106 abundant, composite
911 1, 911 2 912 1 deficient, prime
912 1, 2, 3, 4, 6, 8, 12, 16, 19, 24, 38, 48, 57, 76, 114, 152, 228, 304, 456, 912 20 2480 1568 abundant, composite
913 1, 11, 83, 913 4 1008 95 deficient, composite
914 1, 2, 457, 914 4 1374 460 deficient, composite
915 1, 3, 5, 15, 61, 183, 305, 915 8 1488 573 deficient, composite
916 1, 2, 4, 229, 458, 916 6 1610 694 deficient, composite
917 1, 7, 131, 917 4 1056 139 deficient, composite
918 1, 2, 3, 6, 9, 17, 18, 27, 34, 51, 54, 102, 153, 306, 459, 918 16 2160 1242 abundant, composite
919 1, 919 2 920 1 deficient, prime
920 1, 2, 4, 5, 8, 10, 20, 23, 40, 46, 92, 115, 184, 230, 460, 920 16 2160 1240 abundant, composite
n Divisors d(n) σ(n) s(n) Notes
921 1, 3, 307, 921 4 1232 311 deficient, composite
922 1, 2, 461, 922 4 1386 464 deficient, composite
923 1, 13, 71, 923 4 1008 85 deficient, composite
924 1, 2, 3, 4, 6, 7, 11, 12, 14, 21, 22, 28, 33, 42, 44, 66, 77, 84, 132, 154, 231, 308, 462, 924 24 2688 1764 abundant, composite
925 1, 5, 25, 37, 185, 925 6 1178 253 deficient, composite
926 1, 2, 463, 926 4 1392 466 deficient, composite
927 1, 3, 9, 103, 309, 927 6 1352 425 deficient, composite
928 1, 2, 4, 8, 16, 29, 32, 58, 116, 232, 464, 928 12 1890 962 abundant, composite
929 1, 929 2 930 1 deficient, prime
930 1, 2, 3, 5, 6, 10, 15, 30, 31, 62, 93, 155, 186, 310, 465, 930 16 2304 1374 abundant, composite
931 1, 7, 19, 49, 133, 931 6 1140 209 deficient, composite
932 1, 2, 4, 233, 466, 932 6 1638 706 deficient, composite
933 1, 3, 311, 933 4 1248 315 deficient, composite
934 1, 2, 467, 934 4 1404 470 deficient, composite
935 1, 5, 11, 17, 55, 85, 187, 935 8 1296 361 deficient, composite
936 1, 2, 3, 4, 6, 8, 9, 12, 13, 18, 24, 26, 36, 39, 52, 72, 78, 104, 117, 156, 234, 312, 468, 936 24 2730 1794 abundant, composite
937 1, 937 2 938 1 deficient, prime
938 1, 2, 7, 14, 67, 134, 469, 938 8 1632 694 deficient, composite
939 1, 3, 313, 939 4 1256 317 deficient, composite
940 1, 2, 4, 5, 10, 20, 47, 94, 188, 235, 470, 940 12 2016 1076 abundant, composite
n Divisors d(n) σ(n) s(n) Notes
941 1, 941 2 942 1 deficient, prime
942 1, 2, 3, 6, 157, 314, 471, 942 8 1896 954 abundant, composite
943 1, 23, 41, 943 4 1008 65 deficient, composite
944 1, 2, 4, 8, 16, 59, 118, 236, 472, 944 10 1860 916 deficient, composite
945 1, 3, 5, 7, 9, 15, 21, 27, 35, 45, 63, 105, 135, 189, 315, 945 16 1920 975 abundant, composite
946 1, 2, 11, 22, 43, 86, 473, 946 8 1584 638 deficient, composite
947 1, 947 2 948 1 deficient, prime
948 1, 2, 3, 4, 6, 12, 79, 158, 237, 316, 474, 948 12 2240 1292 abundant, composite
949 1, 13, 73, 949 4 1036 87 deficient, composite
950 1, 2, 5, 10, 19, 25, 38, 50, 95, 190, 475, 950 12 1860 910 deficient, composite
951 1, 3, 317, 951 4 1272 321 deficient, composite
952 1, 2, 4, 7, 8, 14, 17, 28, 34, 56, 68, 119, 136, 238, 476, 952 16 2160 1208 abundant, composite
953 1, 953 2 954 1 deficient, prime
954 1, 2, 3, 6, 9, 18, 53, 106, 159, 318, 477, 954 12 2106 1152 abundant, composite
955 1, 5, 191, 955 4 1152 197 deficient, composite
956 1, 2, 4, 239, 478, 956 6 1680 724 deficient, composite
957 1, 3, 11, 29, 33, 87, 319, 957 8 1440 483 deficient, composite
958 1, 2, 479, 958 4 1440 482 deficient, composite
959 1, 7, 137, 959 4 1104 145 deficient, composite
960 1, 2, 3, 4, 5, 6, 8, 10, 12, 15, 16, 20, 24, 30, 32, 40, 48, 60, 64, 80, 96, 120, 160, 192, 240, 320, 480, 960 28 3048 2088 abundant, highly abundant, composite
n Divisors d(n) σ(n) s(n) Notes
961 1, 31, 961 3 993 32 deficient, composite
962 1, 2, 13, 26, 37, 74, 481, 962 8 1596 634 deficient, composite
963 1, 3, 9, 107, 321, 963 6 1404 441 deficient, composite
964 1, 2, 4, 241, 482, 964 6 1694 730 deficient, composite
965 1, 5, 193, 965 4 1164 199 deficient, composite
966 1, 2, 3, 6, 7, 14, 21, 23, 42, 46, 69, 138, 161, 322, 483, 966 16 2304 1338 abundant, composite
967 1, 967 2 968 1 deficient, prime
968 1, 2, 4, 8, 11, 22, 44, 88, 121, 242, 484, 968 12 1995 1027 abundant, composite
969 1, 3, 17, 19, 51, 57, 323, 969 8 1440 471 deficient, composite
970 1, 2, 5, 10, 97, 194, 485, 970 8 1764 794 deficient, composite
971 1, 971 2 972 1 deficient, prime
972 1, 2, 3, 4, 6, 9, 12, 18, 27, 36, 54, 81, 108, 162, 243, 324, 486, 972 18 2548 1576 abundant, composite
973 1, 7, 139, 973 4 1120 147 deficient, composite
974 1, 2, 487, 974 4 1464 490 deficient, composite
975 1, 3, 5, 13, 15, 25, 39, 65, 75, 195, 325, 975 12 1736 761 deficient, composite
976 1, 2, 4, 8, 16, 61, 122, 244, 488, 976 10 1922 946 deficient, composite
977 1, 977 2 978 1 deficient, prime
978 1, 2, 3, 6, 163, 326, 489, 978 8 1968 990 abundant, composite
979 1, 11, 89, 979 4 1080 101 deficient, composite
980 1, 2, 4, 5, 7, 10, 14, 20, 28, 35, 49, 70, 98, 140, 196, 245, 490, 980 18 2394 1414 abundant, composite
n Divisors d(n) σ(n) s(n) Notes
981 1, 3, 9, 109, 327, 981 6 1430 449 deficient, composite
982 1, 2, 491, 982 4 1476 494 deficient, composite
983 1, 983 2 984 1 deficient, prime
984 1, 2, 3, 4, 6, 8, 12, 24, 41, 82, 123, 164, 246, 328, 492, 984 16 2520 1536 abundant, composite
985 1, 5, 197, 985 4 1188 203 deficient, composite
986 1, 2, 17, 29, 34, 58, 493, 986 8 1620 634 deficient, composite
987 1, 3, 7, 21, 47, 141, 329, 987 8 1536 549 deficient, composite
988 1, 2, 4, 13, 19, 26, 38, 52, 76, 247, 494, 988 12 1960 972 deficient, composite
989 1, 23, 43, 989 4 1056 67 deficient, composite
990 1, 2, 3, 5, 6, 9, 10, 11, 15, 18, 22, 30, 33, 45, 55, 66, 90, 99, 110, 165, 198, 330, 495, 990 24 2808 1818 abundant, composite
991 1, 991 2 992 1 deficient, prime
992 1, 2, 4, 8, 16, 31, 32, 62, 124, 248, 496, 992 12 2016 1024 abundant, composite
993 1, 3, 331, 993 4 1328 335 deficient, composite
994 1, 2, 7, 14, 71, 142, 497, 994 8 1728 734 deficient, composite
995 1, 5, 199, 995 4 1200 205 deficient, composite
996 1, 2, 3, 4, 6, 12, 83, 166, 249, 332, 498, 996 12 2352 1356 abundant, composite
997 1, 997 2 998 1 deficient, prime
998 1, 2, 499, 998 4 1500 502 deficient, composite
999 1, 3, 9, 27, 37, 111, 333, 999 8 1520 521 deficient, composite
1000 1, 2, 4, 5, 8, 10, 20, 25, 40, 50, 100, 125, 200, 250, 500, 1000 16 2340 1340 abundant, composite

[edit] See also

Static Wikipedia (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2007 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2006 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu

Static Wikipedia February 2008 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu