Web Analytics

See also ebooksgratis.com: no banners, no cookies, totally FREE.

CLASSICISTRANIERI HOME PAGE - YOUTUBE CHANNEL
Privacy Policy Cookie Policy Terms and Conditions
Vector fields in cylindrical and spherical coordinates - Wikipedia, the free encyclopedia

Vector fields in cylindrical and spherical coordinates

From Wikipedia, the free encyclopedia

Contents

[edit] Cylindrical coordinate system

[edit] Vector fields

Vectors are defined in cylindrical coordinates by (ρ,φ,z), where

  • ρ is the length of the vector projected onto the X-Y-plane,
  • φ is the angle of the projected vector with the positive X-axis (0 ≤ φ < 2π),
  • z is the regular z-coordinate.

(ρ,φ,z) is given in cartesian coordinates by:

\left[\begin{matrix}     \rho & = & \sqrt{x^2 + y^2} \\     \phi & = & \operatorname{arctan}(y / x), & 0 \le \phi < 2\pi \\     z & = & z \end{matrix}\right.

or inversely by:

\left[\begin{matrix}     x & = & \rho\cos\phi \\     y & = & \rho\sin\phi \\     z & = & z \end{matrix}\right.

Any vector field can be written in terms of the unit vectors as:

\mathbf A = A_x \mathbf{\hat x} + A_y \mathbf{\hat y} + A_z \mathbf{\hat z}                   = A_\rho \boldsymbol{\hat \rho} + A_\phi \boldsymbol{\hat \phi} + A_z \boldsymbol{\hat z}

The cylindrical unit vectors are related to the cartesian unit vectors by:

\begin{bmatrix}\boldsymbol{\hat\rho} \\ \boldsymbol{\hat\phi} \\ \boldsymbol{\hat z}\end{bmatrix}   = \begin{bmatrix} \cos\phi & \sin\phi & 0 \\                    -\sin\phi & \cos\phi & 0 \\                    0 & 0 & 1 \end{bmatrix}     \begin{bmatrix} \mathbf{\hat x} \\ \mathbf{\hat y} \\ \mathbf{\hat z} \end{bmatrix}

[edit] Time derivative of a vector field

To find out how the vector field A changes in time we calculate the time derivatives. In cartesian coordinates this is simply:

\mathbf{\dot A} = \dot A_x \mathbf{\hat x} + \dot A_y \mathbf{\hat y} + \dot A_z \mathbf{\hat z}

However, in cylindrical coordinates this becomes:

\mathbf{\dot A} = \dot A_\rho \boldsymbol{\hat\rho} + A_\rho \boldsymbol{\dot{\hat\rho}}    + \dot A_\phi \boldsymbol{\hat\phi} + A_\phi \boldsymbol{\dot{\hat\phi}}   + \dot A_z \boldsymbol{\hat z} + A_z \boldsymbol{\dot{\hat z}}

We need the time derivatives of the unit vectors. They are given by:

\left[\begin{matrix}   \boldsymbol{\dot{\hat\rho}} & = & \dot\phi \boldsymbol{\hat\phi} \\   \boldsymbol{\dot{\hat\phi}} & = & - \dot\phi \boldsymbol{\hat\rho} \\   \boldsymbol{\dot{\hat z}}   & = & 0 \end{matrix}\right.

So the time derivative simplifies to:

\mathbf{\dot A} = \boldsymbol{\hat\rho} (\dot A_\rho - A_\phi \dot\phi)   + \boldsymbol{\hat\phi} (\dot A_\phi + A_\rho \dot\phi)   + \boldsymbol{\hat z} \dot A_z

[edit] Spherical coordinate system

[edit] Vector fields

Vectors are defined in spherical coordinates by (r,θ,φ), where

  • r is the length of the vector,
  • θ is the angle with the positive Z-axis (0 <= θ <= π),
  • φ is the angle with the X-Z-plane (0 <= φ < 2π).

(r,θ,φ) is given in cartesian coordinates by:

\left[\begin{matrix}     r & = & \sqrt{x^2 + y^2 + z^2} \\     \theta & = & \arccos\left( z / r\right), & 0 \le \theta \le \pi \\     \phi & = & \operatorname{arctan}(y / x), & 0 \le \phi < 2\pi \end{matrix}\right.

or inversely by:

\left[\begin{matrix}     x & = & r\sin\theta\cos\phi \\     y & = & r\sin\theta\sin\phi \\     z & = & r\cos\theta \end{matrix}\right.

Any vector field can be written in terms of the unit vectors as:

\mathbf A = A_x\mathbf{\hat x} + A_y\mathbf{\hat y} + A_z\mathbf{\hat z}                   = A_r\boldsymbol{\hat r} + A_\theta\boldsymbol{\hat \theta} + A_\phi\boldsymbol{\hat \phi}

The spherical unit vectors are related to the cartesian unit vectors by:

\begin{bmatrix}\boldsymbol{\hat r} \\ \boldsymbol{\hat\theta}  \\ \boldsymbol{\hat\phi} \end{bmatrix}   = \begin{bmatrix} \sin\theta\cos\phi & \sin\theta\sin\phi & \cos\theta \\                     \cos\theta\cos\phi & \cos\theta\sin\phi & -\sin\theta \\                     -\sin\phi          & \cos\phi           & 0 \end{bmatrix}     \begin{bmatrix} \mathbf{\hat x} \\ \mathbf{\hat y} \\ \mathbf{\hat z} \end{bmatrix}

[edit] Time derivative of a vector field

To find out how the vector field A changes in time we calculate the time derivatives. In cartesian coordinates this is simply:

\mathbf{\dot A} = \dot A_x \mathbf{\hat x} + \dot A_y \mathbf{\hat y} + \dot A_z \mathbf{\hat z}

However, in spherical coordinates this becomes:

\mathbf{\dot A} = \dot A_r \boldsymbol{\hat r} + A_r \boldsymbol{\dot{\hat r}}   + \dot A_\theta \boldsymbol{\hat\theta} + A_\theta \boldsymbol{\dot{\hat\theta}}   + \dot A_\phi \boldsymbol{\hat\phi} + A_\phi \boldsymbol{\dot{\hat\phi}}

We need the time derivatives of the unit vectors. They are given by:

\begin{bmatrix}\boldsymbol{\dot{\hat r}} \\ \boldsymbol{\dot{\hat\theta}}  \\ \boldsymbol{\dot{\hat\phi}} \end{bmatrix}   = \begin{bmatrix} 0           & \dot\theta & \dot\phi \sin\theta \\                     -\dot\theta & 0          & \dot\phi \cos\theta \\                     -\dot\phi \sin\theta & -\dot\phi \cos\theta & 0 \end{bmatrix}     \begin{bmatrix} \boldsymbol{\hat r} \\ \boldsymbol{\hat\theta} \\ \boldsymbol{\hat\phi} \end{bmatrix}

So the time derivative becomes:

\mathbf{\dot A} = \boldsymbol{\hat r} (\dot A_r - A_\theta \dot\theta - A_\phi \dot\phi \sin\theta)   + \boldsymbol{\hat\theta} (\dot A_\theta + A_r \dot\theta - A_\phi \dot\phi \cos\theta)   + \boldsymbol{\hat\phi} (\dot A_\phi + A_r \dot\phi \sin\theta + A_\theta \dot\phi \cos\theta)

[edit] See also

In other languages

Static Wikipedia (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2007 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2006 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu

Static Wikipedia February 2008 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu