Web Analytics

See also ebooksgratis.com: no banners, no cookies, totally FREE.

CLASSICISTRANIERI HOME PAGE - YOUTUBE CHANNEL
Privacy Policy Cookie Policy Terms and Conditions
Histogramme - Wikipédia

Histogramme

Un article de Wikipédia, l'encyclopédie libre.

Vous avez de nouveaux messages (diff ?).

L'histogramme est le graphe permettant de représenter l'impact de diverses variables continues.

Sommaire

[modifier] Construction théorique

Soit \left([a_i,a_{i+1}[,n_i\right)_i, la distribution statistique d'une variable aléatoire continue. Pour chaque classe [ai,ai + 1[, nous allons associer un rectangle de largeur ai + 1ai et d'aire l'effectif ni.

Si l'unité d'aire est le carré unité, la hauteur du rectangle est donc \frac{n_i}{a_{i+1}-a_i}.

Plus généralement, pour un même effectif, si l'amplitude de la classe est deux fois plus grande, la hauteur du rectangle doit être deux fois plus petite.

[modifier] Exemple

Considérons une population d’individus et intéressons nous à leurs tailles respectives.

Le relevé de leurs tailles donne la répartition suivante :

Classe
(unité : mètre)
Nombre de personnes
dont la taille
est incluse dans la classe
[1,60 ;1,70[ 16
[1,70 ;1,75[ 15
[1,75 ;1,80[ 18
[1,80 ;1,85[ 7
[1,85 ;1,95[ 8
[1,95 ;2,05[ 2
Ce qui donne l’histogramme suivant :
Agrandir

L'amplitude des classes [1,60;1,70[, [1,85;1,95[ et [1,95;2,05[ est de 0,10 m. Les trois classes [1,70;1,75[, [1,75;1,80[ et [1,80;1,85[ est de 0,05 m. Elles ont une largeur moitié moins grande. Si l'unité d'aire est donnée par un rectangle de base 0,05 et de hauteur 1 unité, les hauteurs du premier et des deux derniers rectangles doivent être respectivement de 8,4 et 1 unités.

[modifier] L’histogramme un outil pour la gestion de la qualité

L’histogramme est un moyen simple et rapide pour représenter la distribution d’un paramètre obtenu lors d’une fabrication.

Exemple :

L’histogramme est un outil « visuel » qui permet de détecter certaines anomalies ou de faire un diagnostic avant d’engager une démarche d’amélioration. Utilisé dans ce cadre, l’histogramme est un outil « qualitatif ». Pour pouvoir bien mener l’étude de la dispersion d’un paramètre à l’aide d’un ou de plusieurs histogrammes, il faut avoir une bonne connaissance du paramètre étudié. De même, il faut connaître les conditions de collecte des données : fréquence de mesure, outil de mesure utilisé, possibilité de mélange de lots, possibilité de tri etc.

[modifier] Construction d’un histogramme

[modifier] Collecte des données

La première phase est la collecte des données en cours de fabrication. Cette collecte peut être réalisée soit de façon exceptionnelle à l’occasion de l’étude du paramètre soit en utilisant un relevé automatique ou manuel fait lors d’un contrôle réalisé dans le cadre de la surveillance du procédé de fabrication.

Sans qu’il soit réellement possible de donner un nombre minimum, il faut que le nombre de valeurs relevées soit suffisant. Plus l’on dispose d’un nombre élevé de valeurs, plus l’interprétation sera aisée.

[modifier] Nombre de classes

La première opération est de déterminer le nombre de classes de l’histogramme. Généralement, dans le cadre d’une analyse de ce type, on utilise des classes de largeur identique.

Le nombre de classes dépend du nombre de valeurs N dont on dispose.

Le nombre de classe K peut être déterminé par la formule suivante :

K= 1 + \frac{10 \log(N)}{3}

ou plus simplement

K = \sqrt{N}\,

Cependant, l’histogramme étant un outil visuel, il est possible de faire varier le nombre de classes. Ceci permet de voir l’histogramme avec un nombre différent de classes et ainsi de trouver le meilleur compromis qui facilitera l’interprétation. L’utilisation d’un logiciel dédié ou plus simplement d’un tableur facilite cette opération.

[modifier] Intervalles de classe

L’amplitude w de l’histogramme est

w = \hbox{valeur maximale} - \hbox{valeur minimale}\,

L’amplitude h théorique de chaque classe est alors :

h = \frac{w}{K}

Il faut arrondir cette valeur à un multiple de résolution de l’instrument de mesure (arrondi à l'excès).

Exemple : Soit la masse d’une préparation culinaire avant conditionnement. Le calcul d'amplitude de classe donne hth = 0,014 kg. La résolution de la balance utilisée est de 0,001 kg. On arrondit la valeur h à 0,015 kg.

Les classes peuvent être du type [limite inférieure ; limite supérieure[ ou ] limite inférieure ; limite supérieure].

La valeur minimale de la première classe est donnée par la valeur minimale de la série moins une demi-résolution.

Exemple : la valeur la plus petite relevée lors de la fabrication de la préparation culinaire est de 0,498 g. La limite inférieur sera : 0,498 – (0,001 / 2) = 0,4975 kg.

Pour plus de facilité, il est préférable de prendre une valeurs « ronde » par exemple 0,495 kg

[modifier] Exemple

Soit la fabrication de rations alimentaires, la pesée des rations avant emballage donne la série de mesures suivantes en kg :

0,547 0,563 0,532 0,521 0,514 0,547 0,578 0,532 0,552 0,526 0,534 0,560 0,502 0,503 0,516 0,565
0,532 0,574 0,521 0,523 0,542 0,539 0,543 0,548 0,565 0,569 0,574 0,596 0,547 0,578 0,532 0,552
0,554 0,596 0,529 0,555 0,559 0,503 0,499 0,526 0,551 0,589 0,588 0,568 0,564 0,568 0,556 0,523
0,526 0,579 0,551 0,584 0,551 0,512 0,536 0,567 0,512 0,553 0,534 0,559 0,498 0,567 0,589 0,579

Les caractéristiques du relevé sont les suivantes :

  • Le nombre d'échantillons : N=64
  • L'étendue : w=0,098 kg
  • Valeur minimale : 0,498 kg
  • Valeur maximale : 0,596 kg


On en déduit les paramètres suivants pour l'histogramme :

  • Le nombre de classes est de 7 (en utilisant la formule avec le logarithme)
  • L'amplitude de classe est 0,098/7 = 0,014 kg que l'on arrondit à 0,015 kg (résolution de la balance : 0,001 kg)
  • La valeur minimale de la première classe est de 0,498 – (0,001/2) = 0,4975. Par souci de facilité pour l'interprétation, on peut arrondir cette valeur à 0,495 kg.

On obtient l'histogramme suivant

[modifier] Interprétation d'un histogramme

Comparaison d'un histogramme avec la courbe d'une loi normale

La distribution de beaucoup de paramètres industriels correspond souvent à une loi normale. On compare souvent l'histogramme obtenu au profil « en cloche » de la loi normale. Cette comparaison est visuelle et même si elle peut être une première approche, elle ne constitue pas un test de « normalité ». Pour cela, il faut exécuter un test dont un des plus classique est la droite de Henry.

Nota : la distribution suivant la loi normale, si elle est extrêmement fréquente, n'est pas systématique. On vérifiera que la distribution ne correspond pas à une distribution de défaut de forme (exemple : mesure de l'excentration dans un tube, position d'objets lancés dans la direction d'un mur dont certains rebondissent sur ce mur).

L'interprétation peut, par exemple, donner les résultats suivants :

Histogramme montrant un mélange de deux lots. Histogramme montrant un mélange de deux lots mais avec une moyenne proche. On veillera dans ce cas à faire aussi varier le nombre de classes pour vérifier qu'il ne s'agit pas d'un problème de construction. Histogramme montrant que le lot a subi un tri. Tous les éléments pour lesquels la valeur du paramètre mesuré était inférieure à A ont été supprimés.
Agrandir
Agrandir
Agrandir

Nota : dans le cas d'histogramme montrant un mélange de deux lots ayant une moyenne différente, il existe des cas où la dispersion présente cet aspect sans pour autant incriminer un mélange. C'est par exeple le cas de la mesure d'une pièce cylindrique mais qui présente un défaut de type ovalisation. Les deux moyennes représentent alors le grand diamètre et le petit diamètre. C'est la connaissance du procédé et/ou du produit qui permet de réaliser ce type d'interprétation.

[modifier] Voir aussi

[modifier] Liens internes

[modifier] Bibliographie

  • Maurice Lethielleux, Statistique descriptive, éditions Dunod, Paris, 1999, ISBN 2 10 003513 4, 124 pages.
  • Maurice Pillet, Appliquer la maîtrise statistique des procédés MSP/SPC, Les Éditions d'Organisation, 1995, ISBN 2-7081-1774-2, 336 pages.
  • Pierre Souvay, Statistique et qualité, AFNOR, Paris, collection « A savoir », 1994, 40 pages.
  • Pierre Souvay, Savoir utiliser la statistique, outil à la décision et à l 'amélioration de la qualité, AFNOR, Saint-Denis-la-Plaine, 2002, ISBN 2-12-475821-7, 434 pages
Articles de mathématiques en rapport avec les probabilités ou les statistiques
Statistiques descriptives | Analyse des données | Visualisation des données | Estimateurs | Tests statistiques | Séries temporelles et économétrie | Statistique Mathématique | Théorie des probabilités | Variables aléatoires | Inégalités | Théorèmes limites | Processus stochastiques | la mécanique statistique | Les statistiques et l'économie | Les statistiques et la sociologie | Les statistiques et les sciences | Les probabilités et les jeux | Les équations aux dérivées partielles et les probabilités
Modifier

Static Wikipedia (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2007 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2006 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu

Static Wikipedia February 2008 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu