Loi de Curie
Un article de Wikipédia, l'encyclopédie libre.
Étape 2/5 : En cours de Traduction.
• Merci de ne pas tenter de modifier cet article afin d'éviter les risques de conflits de versions.
Avertissement : le bandeau unique {{Projet:Traduction/Loi de Curie}}
remplace désormais avantageusement tous ceux que vous utilisez actuellement. Veuillez consultez la page Projet:Traduction
Dans un matériau paramagnétique la loi de Curie décrit la magnétisation d'un matériau comme une fonction du champ magnétique appliqué et de la température.
- est la magnétisation
- est le flux du champ magnétique appliqué, mesuré en teslas
- T est la température absolue, en kelvins
- C est la constante de Curie du matériau.
Cette relation a été découverte de manière expérimentale par Pierre Curie.
[modifier] Derivation (Statistical Mechanics)
A simple model of a paramagnet concentrates on the particles which compose it, call them paramagnetons. Assume that each paramagneton has a magnetic moment given by . Energy of a magnetic moment in a magnetic field is given by
To simplify the calculation, we are going to work with a 2-state paramagnet, that is, the particle can either align its magnetic moment with the magnetic field, or against it. No other orientations are possible. If so, then such particle has only two possible energies
- E0 = μB
and
- E1 = − μB
With this information we can construct the partition function of one paramagneton
When one seeks the magnetization of a paramagnet, one is interested in the likelihood of a paramagneton to align itself with the field. In other words, one seeks the expectation value of orientation μ.
This is magnetization of one paramagneton, total magnetization of the solid is given by
The formula above is known as the Langevin Paramagnetic equation. Pierre Curie found an approximation to this law that applies to the reasonably high temperatures and low magnetic fields used in his experiments. Let's see what happens to the magnetization as we specialize it to large T and small B. As temperature increases and magnetic field decreases, the argument of hyperbolic tangent decreases. Another way to say this is
this is sometimes called the Curie regime. We also know that if | x | < < 1, then
so
[modifier] Applications
It is the basis of operation of magnetic thermometers, that are used to measure very low temperatures.
[modifier] See also
- Loi de Curie-Weiss
- Paramagnétisme
- Pierre Curie