ebooksgratis.com

Project Gutenberg

Contents Listing Alphabetical by Author:
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z Unknown Other
Contents Listing Alphabetical by Title:
# A B C D E F G H I J K L M N O P Q R S T U V W Y Z Other

Amazon - Audible - Barnes and Noble - Everand - Kobo - Storytel 

See also ebooksgratis.com: no banners, no cookies, totally FREE.

CLASSICISTRANIERI HOME PAGE - YOUTUBE CHANNEL
Privacy Policy Cookie Policy Terms and Conditions
Bóson - Wikipédia, a enciclopédia livre

Bóson

Origem: Wikipédia, a enciclopédia livre.

Bósons (português brasileiro) ou bosões (português europeu) são partículas que possuem spin inteiro (em unidades de \hbar) e obedecem à estatística de Bose-Einstein. Têm este nome em homenagem ao físico Satyendra Nath Bose.

Exemplos de bósons:

[editar] Motivação

As partículas microscópicas exibem propriedades que, no começo do século XX, motivaram o surgimento da mecânica quântica. O problema da identidade das partículas, antes tido como ponto pacífico pela mecânica clássica, toma feição inteiramente nova.

Duas partículas que podem ser distingüidas pela posição na mecânica clássica já não o podem ser pela mecânica quântica. Isso decorre pela imprecisão inerente às medidas efetuadas sobre os observáveis, que correspondem, grosso modo, à noção de propriedade da mecânica clássica.

A imprecisão da mecânica quântica decorre do princípio da incerteza de Heisenberg, que estipula restrição para a medição simultânea de propriedades incompatíveis, que são aquelas que são relacionadas pela relação de incerteza de Heisenberg


[editar] Estatística quântica

Com o advento da mecânica quântica as noções de distinguibilidade das partículas subatômicas e da ocupação de estados de energia sofreu sérias reformulações.

No começo do século XX, Boltzmann havia chegado a forma correta da distribuição do número de partículas em função do nível de energia. Mas isso no âmbito da mecânica clássica.

Contudo, principalmente com o surgimento da moderna teoria quântica, o conceito de trajetória se torna seriamente prejudicado, quando não totalmente desnecessário e contraditório.

Uma trajetória implica no deslocamento, no espaço (e é claro, no tempo) de uma partícula, idealizada como um ponto matemático. Nesse sentido, uma trajetória física corresponderia, na matemática, a uma curva suave e diferenciável, completamente contínua em todos os seus pontos.

Porém, mesmo no trabalho de Einstein sobre o movimento browniano em 1905 (publicado juntamente com outros três trabalhos: sobre o efeito fotoelétrico, sobre o calor específico dos sólidos e sobre a relatividade), esse cientista postulou trajetórias em zig-zag, descontínuas em inúmeros (para não dizer infinitos) pontos, para as moléculas e átomos, assim como também as partículas movidas, fossem elas partículas de pó, pólen, dentre outras. Assim, ainda no cenário da física clássica, as trajetórias suaves já eram admissíveis.

Com o entendimento trazido à luz pela interpretação do princípio da incerteza de Heisenberg, e pela interpretação estatística da função de onda dada por Max Born foi totalmente por terra a noção de que a partícula tinha trajetória definida.

Assim sendo, não se podem distinguir partículas cujas características sejam idênticas se se aproximam muito uma da outra, porque então não se pode identifica-las pela trajetória, já que para pontos muitos próximos, dependendo da velocidade, os pontos já não são discerníveis. A relação matemática que rege essa indeterminação fundamental é a relação da incerteza de Heisenberg:

[Xk,Pl] = i\hbar\delta_kl

onde Xk representa o operador posição e Pl representa o operador de momento linear

Dentro desse entendimento, a distribuição de Boltzmann não é mais válida, senão como aproximação. Verificou-se que as distribuições válidas para partículas com carácter manifestamente quântico, são as seguintes:

  • Distribuição de Fermi-Dirac
  • Distribuição de Bose-Einstein

A primeira é válida para partículas de spin semi-inteiro ( 1/2, 3/2, 5/2...),em unidades de \hbar, ou seja, para os férmions, ao passo que a segunda é a distribuição válida para partículas de spin inteiro (0,1,2,3...), ou seja, para os bósons, assunto deste artigo.

Pode-se explicar qualitativa e sucintamente, de forma simplificada, que os bósons podem ter as suas funções de onda explicitadas separadamente em coordenadas espaciais e nas coordenadas de spin. A função de onda para os bósons são funções simétricas perante a inversão simultânea das coordenadas espaciais e das coordenadas de spin.

Static Wikipedia (no images) - November 2006

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - be - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - closed_zh_tw - co - cr - cs - csb - cu - cv - cy - da - de - diq - dv - dz - ee - el - eml - en - eo - es - et - eu - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gd - gl - glk - gn - got - gu - gv - ha - haw - he - hi - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mg - mh - mi - mk - ml - mn - mo - mr - ms - mt - mus - my - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - rm - rmy - rn - ro - roa_rup - roa_tara - ru - ru_sib - rw - sa - sc - scn - sco - sd - se - searchcom - sg - sh - si - simple - sk - sl - sm - sn - so - sq - sr - ss - st - su - sv - sw - ta - te - test - tet - tg - th - ti - tk - tl - tlh - tn - to - tokipona - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu