Ударный кратер
Материал из Википедии — свободной энциклопедии
Ударный кратер — углубление, появившееся на поверхности космического тела в результате падения другого тела меньшего размера. Ударный кратер на поверхности Земли называют также астроблемой (от астро… и греч. blema — рана, то есть «звёздная рана»). Термин «астроблема» введён в 1960 Дицем. Само событие (удар метеорита) иногда называют импактом или импактным событием. На Земле обнаружено около 150 крупных астроблем.
Содержание |
[править] История вопроса
Одним из первых учёных, связавших кратер с падением метеорита, был Дэниел Бэрринджер (1860—1929). Он изучал ударный кратер в Аризоне, ныне носящий его имя. Однако в то время эти идеи не получили широкого признания (как и тот факт, что Земля подвергается регулярной метеоритной бомбардировке).
В 1920-е годы американский геолог Уолтер Бачер, исследовавший ряд кратеров на территории США высказал мысль, что они вызваны некими взрывными событиями в рамках его теории «пульсации Земли».
В 1936 геологи Джон Бун и Клод Албриттон продолжили исследования Бачера и пришли к выводу, что кратеры имеют импактную природу.
Теория ударного происхождения кратеров оставалась не более чем гипотезой вплоть до 1960-х. К этому времени ряд учёных (в первую очередь Юджин Шумейкер) провели детальные исследования, полностью подтвердившие импактную теорию. В частности, были обнаружены следы веществ, называемых импактитами (например, Shocked quartz), которые могли образоваться только в специфических условиях импакта.
После этого исследователи стали целенаправлено искать импактиты, чтобы идентифицировать древние ударные кратеры. К 1970-м было найдено около 50 импактных структур.
Космические исследования показали, что ударные кратеры — самая распространённая геологическая структура в Солнечной системе. Это подтвердило тот факт, что и Земля подвергается регулярной метеоритной бомбардировке.
[править] Геологическое строение
Особенности строения кратеров определяются рядом факторов, среди которых основными являются энергия соударения (зависящая, в свою очередь от массы и скорости космического тела, плотности атмосферы), угол встречи с поверхностью и твёрдость веществ, образующих метеорит и поверхность.
При касательном ударе возникают бороздообразные кратеры небольшой глубины со слабым разрушением подстилающих пород, такие кратеры достаточно быстро разрушаются вследствие эрозии. Примером может служить кратерное поле Рио Кварта в Аргентине возраст которого составляет около 10 000 лет: самый крупный кратер поля имеет длину 4,5 км и ширину 1,1 км при глубине 7-8 м.
При направлении столкновения, близком к вертикальному возникают округлые кратеры, морфология которых зависит от их диаметра (см. Рис. 1). Небольшие кратеры (диаметром 3-4 км имеют простую чашеобразную форму, их воронка окружена валом, образованным задранными пластами подстилающих пород (Рис.1, 6) (цокольный вал), перекрытый выброшенными из кратера обломками (насыпной вал, аллогенная брекчия (Рис.1: 1)). Под дном кратера залегают аутигенные брекчии (Рис.1: 3)- породы, раздробленные и частично метаморфизированные (Рис.1: 4) при столкновении, под брекчией расположены трещиноватые горные породы (Рис. 1: 5,6). Отношение глубины к диаметру у таких кратеров близко к 1/3, что отличает их от кратерообразных структур вулканического происхождения, у которых отношение глубины к диаметру составляет ~0.4.
При больших диаметрах возникает центральная горка над точкой удара (в месте максимального сжатия пород), при ещё больших диаметрах кратера (более 14-15 км) образуются кольцевые поднятия. Эти структуры связаны с волновыми эффектами (подобно капле, падающей на поверхность воды). С ростом диаметра кратеры быстро уплощаются: отношение глубина/диаметр падает до 0,05-0,02.
Размер кратера может зависеть от мягкости поверхностных пород (чем мягче, тем, как правило, меньше кратер).
На телах, не обладающих плотной атмосферой, вокруг кратеров могут сохраняться длинные «лучи» (образовавшиеся в результате выброса вещества в момент удара).
При падении крупного метеорита в море могут возникать мощные цунами (например, юкатанский метеорит, согласно расчётам, вызвал цунами высотой 50-100м).
Метеориты массой свыше 1000 тонн практически не задерживаются земной атмосферой, метеориты меньшей массы могут существенно тормозиться и даже полностью испаряться, не достигая поверхности.
У старых астроблем видимая структура кратера (горка и вал) зачастую разрушена эрозией и погребена под наносным материалом, однако по изменениям свойств подстилающих и перенесённых горных пород такие структуры достаточно чётко определяются сейсмическими и магнитными (Рис. 3) методами.
[править] Ударный метаморфизм и импактиты
Относительно крупные метеориты падают врезаются в поверхность Земли со скоростью не менее 11,6 км/с. Их кинетическая энергия превышает энергию, выделяющуюся при детонации обычной взрывчатки той же массы. Энергия, выделяющаяся при падении метеорита массой свыше 1 тыс. тонн сравнима с энергией ядерного взрыва. Метеориты такой массы падают на Землю ежегодно.
Столкновение небесного тела с поверхностью земли приводит к взрывному росту температуры и давления в окрестностях соударения, при этом в момент удара давление на горные породы достигает гигапаскалей, а температура — десятков тысяч градусов. Происходит образование плазмы, которая резко расширяется (взрывается). При крупных импактах сила взрыва столь велика, что часть вещества может улететь в космическое пространство.
Пиковые значения давлений и температур при столкновении зависят от энерговыделения при столкновении, то есть скорости небесного тела при столкновении, при этом часть выделевшийся энергии преобразуется в механическую форму (ударная волна), часть — в тепловую (разогрев пород вплоть до их испарения); плотность энергии падает при удалении от центра соударения. Соответственно, при образоввании астроблемы диаметром 10 км в граните соотношение испарённого, расплавленного и раздробленного материала составляет ~ 1:110:100, в процессе образоввания астроблемы происходит частичное перемешивание этих преобразованных материалов, что обуславливает большое разнообразие пород, образующихся в ходе ударного метаморфизма.
Согласно международной классификации импактитов (International Union of Geological Sciences, 1994 г.), импактиты, локалиизованные в кратере и его окрестностях делятся на три группы (по составу, строению и степени ударного метаморфизма):
- импактированные породы — горные породы мишени, слабо преобразованные ударной волной и сохранившие благодаря этому свои характерные признаки;
- расплавные породы — продукты застывания импактного расплава;
- импактные брекчии — обломочные породы, сформированные без участия импактного расплава или с очень небольшим его количеством.
[править] Импактные события в истории Земли
По оценкам, 1-3 раза в миллион лет на Землю падает метеорит, порождающий кратер шириной не менее 20 км. Это говорит о том, что обнаружено меньше кратеров (в том числе «молодых»), чем их должно быть.
Список наиболее известных земных кратеров:
- Кратер Бэрринджера (США)
- Попигай (Россия)
- Chesapeake Bay impact crater (Восток США)
- Кратер Чиксулуб (Мексика)
- Haughton impact crater (Канада)
- Lonar crater (Индия)
- Mahuika crater (Новая Зеландия)
- Manicouagan Reservoir (Канада)
- Manson crater (США)
- Mistastin crater (Канада)
- Nцrdlinger Ries (Германия)
- Panther Mountain New York, (США)
- Rochechouart crater (Франция)
- Sudbury Basin (Канада)
- Silverpit crater (Великобритания, в Северном море)
- Rio Cuarto craters (Аргентина)
- The Siljan Ring (Швеция)
- Vredefort crater (Vredefort, ЮАР)
- Weaubleau-Osceola impact structure (Центр США)
- Kaali crater (Эстония)
[править] Эрозия кратеров
Кратеры постепенно разрушаются в результате эрозии и геологических процессов, изменяющих поверхность. Наиболее интенсивно эрозия происходит на планетах с плотной атмосферой. Хорошо сохранившийся аризонский кратер Бэрринджера имеет возраст не более 50 тыс. лет.
В то же время, имеются тела с очень низкой кратерированностью и при этом почти лишённые атмосферы. Например, на Ио поверхность постоянно изменяется из-за извержений вулканов, а на Европе — в результате переформировывания ледяного панциря под воздействием внутреннего океана. Кроме того, на ледяных телах рельеф кратеров сглаживается в результате оплывания льда (в течение геологически значимых промежутков времени), поскольку лёд пластичнее горных пород. Пример древнего кратера со стёршимся рельефом — Вальхалла на Каллисто. На Каллисто обнаружен ещё один необычный вид эрозии — разрушение предположительно в результате сублимации льда под воздействием солнечной радиации.
Возраст известных земных ударных кратеров лежит в пределах от 1000 лет до почти 2 млрд. лет. Кратеров старше 200 млн. лет на Земле сохранилось крайне мало. Ещё менее «живучими» являются кратеры, расположенные на морском дне.
[править] См. также
[править] Литература
- В. И. Фельдман. Астроблемы — звёздные раны Земли, Соросовский образовательный журнал, № 9, 1999
- Кольцевые структуры лика планеты. — М.: Знание, К 62 1989. — 48 с. — (Новое в жизни, науке, технике. Сер. «Науки о Земле»; № 5)
[править] Ссылки
- Classification and nomenclature of impactites. International Union of Geological Sciences (IUGS), Subcommission of the Systematics of Metamorphic Rocks (SCMR), Study group K (Chairman: D. Stцffler)
- Earth Impact Datadase
- Detailed aeromagnetic survey over the Yallalie astrobleme, Western Australia by Phil Hawke & M. C. Dentith, Centre for Global Metallogeny, The Univercity of Western Australia