Web Analytics Made Easy - Statcounter
Privacy Policy Cookie Policy Terms and Conditions ตัวหาร - วิกิพีเดีย

ตัวหาร

จากวิกิพีเดีย สารานุกรมเสรี

ในคณิตศาสตร์ ตัวหาร (divisor) ของจำนวนเต็ม n หรือเรียกว่า ตัวประกอบ (factor) ของ n คือจำนวนเต็มที่หาร n ได้โดยไม่มีเศษเหลือ ตัวอย่างเช่น 7 เป็นตัวหารของ 42 เพราะว่า 42/7 = 6 เราจะเรียกว่า 42 หารด้วย 7 ลงตัว หรือ 42 เป็นพหุคูณของ 7 หรือ 7 หาร 42 ลงตัว และเราจะเขียนว่า 7 | 42 ตัวหารสามารถเป็นจำนวนบวกหรือจำนวนลบได้ ตัวหารที่เป็นบวกของ 42 คือ {1, 2, 3, 6, 7, 14, 21, 42}

กรณีพิเศษ: 1 และ -1 เป็นตัวหารของจำนวนเต็มทุกจำนวน และจำนวนเต็มทุกจำนวนเป็นตัวหารของ 0 จำนวนที่หารด้วย 2 ลงตัวเรียกว่า จำนวนคู่ จำนวนที่ไม่ใช่จำนวนคู่เรียกว่าจำนวนคี่

สำหรับชื่อของการหารในเลขคณิต: ถ้า a/b=c แล้ว a คือ ตัวตั้งหาร, b คือ ตัวหาร และ c คือ ผลหาร

[แก้] หลักเกณฑ์ของตัวหารที่มีค่าน้อย

มีหลักเกณฑ์ที่ช่วยให้หาตัวหารที่มีค่าน้อยๆของจำนวน โดยดูจากเลขโดดได้

หลักเกณฑ์การหารคือหลักที่ช่วยในการหาว่าจำนวนนี้หารด้วยจำนวนอื่นๆลงตัวหรือไม่ ในเลขฐานสิบ มีหลักเกณฑ์การหารคือ:

  • จำนวนหารด้วย 2 ลงตัว ก็ต่อเมื่อ เลขโดดหลักสุดท้าย หารด้วย 2 ลงตัว
  • จำนวนหารด้วย 3 ลงตัว ก็ต่อเมื่อ ผลบวกของเลขโดดทุกหลัก หารด้วย 3 ลงตัว
  • จำนวนหารด้วย 4 ลงตัว ก็ต่อเมื่อ จำนวนที่เป็นเลขโดด 2 หลักสุดท้าย หารด้วย 4 ลงตัว
  • จำนวนหารด้วย 5 ลงตัว ก็ต่อเมื่อ เลขโดดหลักสุดท้ายคือ 0 หรือ 5
  • จำนวนหารด้วย 6 ลงตัว ก็ต่อเมื่อ จำนวนนั้นหารด้วย 2 และ 3 ลงตัว
  • จำนวนหารด้วย 7 ลงตัว ก็ต่อเมื่อ ผลลัพธ์ของการนำ 2 เท่าของเลขโดดหลักสุดท้าย ไปลบจำนวนที่นำหลักสุดท้ายทิ้งไป หารด้วย 7 ลงตัว (เช่น 364 หารด้วย 7 ลงตัว เพราะ 36-2×4 = 28 หารด้วย 7 ลงตัว)
  • จำนวนหารด้วย 8 ลงตัว ก็ต่อเมื่อ จำนวนที่เป็นเลขโดด 3 หลักสุดท้าย หารด้วย 8 ลงตัว
  • จำนวนหารด้วย 9 ลงตัว ก็ต่อเมื่อ ผลบวกของเลขโดดทุกหลัก หารด้วย 9 ลงตัว
  • จำนวนหารด้วย 10 ลงตัว ก็ต่อเมื่อ เลขโดดหลักสุดท้ายคือ 0
  • จำนวนหารด้วย 11 ลงตัว ก็ต่อเมื่อ ผลบวกสลับของเลขโดดทุกหลัก หารด้วย 11 ลงตัว (เช่น 182919 หารด้วย 11 ลงตัวเพราะ 1-8+2-9+1-9 = -22 หารด้วย 11 ลงตัว)
  • จำนวนหารด้วย 12 ลงตัว ก็ต่อเมื่อ จำนวนนั้นหารด้วย 3 และ 4 ลงตัว
  • จำนวนหารด้วย 13 ลงตัว ก็ต่อเมื่อ ผลลัพธ์ของการนำ 9 เท่าของเลขโดดหลุกสุดท้าย ไปลบจำนวนที่ลบหลักสุดท้ายทิ้งไป หารด้วย 13 ลงตัว (เช่น 858 หารด้วย 13 ลงตัว เพราะ 85-9×8 = 13 หารด้วย 13 ลงตัว)
  • จำนวนหารด้วย 14 ลงตัว ก็ต่อเมื่อ จำนวนนั้นหารด้วย 2 และ 7 ลงตัว
  • จำนวนหารด้วย 15 ลงตัว ก็ต่อเมื่อ จำนวนนั้นหารด้วย 3 และ 5 ลงตัว

[แก้] ข้อเท็จจริง

หลักพื้นฐาน:

  • ถ้า a | b และ a | c, แล้ว a | (b + c)
  • ถ้า a | b และ b | c, แล้ว a | c
  • ถ้า a | b และ b | a, แล้ว a = b or a = -b
  • ถ้า a | bc และ หรม(a,b)=1 แล้ว a|c

เราเรียกจำนวนที่หาร n ลงตัวและมีค่าไม่เท่ากับ n ว่า"ตัวหารแท้"(proper divisor) ของ n

เราเรียกจำนวนที่มีค่ามากกว่า 1 และมี 1 เป็นตัวหารแท้เพียงตัวเดียวว่า "จำนวนเฉพาะ"

จากทฤษฎีบทมูลฐานของเลขคณิต จำนวนเต็มใดๆสามารถเขียนให้อยู่ในรูปผลคูณของกำลังของจำนวนเฉพาะได้

เราเรียกจำนวนใดๆว่าเป็น "จำนวนสมบูรณ์" (perfect number) เมื่อจำนวนนั้นมีค่าเท่ากับผลบวกของตัวหารแท้ทั้งหมดของมัน จำนวนใดๆที่ไม่สมบูรณ์มีความเป็นไปได้คือ "ขาด" (deficient) ไม่ก็ "เกิน" (abundant)

ฟังก์ชันหลายฟังก์ชันเกี่ยวกับการการหารจำนวนเต็มเป็นฟังก์ชันคูณ(multiplicative function) ยกตัวอย่างเช่น

  • ฟังก์ชัน d:N \rightarrow N กำหนดโดย d(n)= จำนวนของตัวหารบวกทั้งหมดของ n
  • ฟังก์ชัน \sigma: N \rightarrow N กำหนดโดย σ(n)= ผลบวกของตัวหารบวกทั้งหมดของ n

[แก้] ดูเพิ่ม

Static Wikipedia (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2007 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2006 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu

Static Wikipedia February 2008 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu