Hladový algoritmus
Z Wikipedie, otevřené encyklopedie
Hladový algoritmus je jedním z možných způsobů řešení optimalizačních úloh v informatice. V každém svém kroku vybírá lokální minimum, přičemž existuje šance, že takto nalezne minimum globální. Hladový algoritmus se uplatní v případě, kdy je třeba z množiny určitých objektů vybrat takovou podmnožinu, která splňuje jistou předem danou vlastnost a navíc má minimální (případně maximální) ohodnocení. Ohodnocení je obvykle reálné číslo w, přiřazené každému objektu dané množiny, ohodnocení množiny A je definováno jako .
[editovat] Algoritmus
- všechny prvky původní množiny setřídíme do posloupnosti podle rostoucí nebo klesající váhy podle toho, zda chceme výsledek minimalizovat nebo maximalizovat
- položíme
- postupně procházíme posloupnost a vytváříme množiny Ai
- splňuje-li množina danou podmínku, položíme
- jinak Ai = Ai − 1
- projdeme-li takto celou původní množinu, obsahuje množina An prvky, splňující danou vlastnost, a to takové, že součet jejich ohodnocení je minimální (maximální)
[editovat] Příklady
Hladové algoritmy se uplatňují například v následujích úlohách:
- hledání minimální kostry grafu — Kruskalův algoritmus, Jarníkův algoritmus a Borůvkův algoritmus
- problém obchodního cestujícího
- problém batohu: máme dáno n předmětů. Pro každý předmět máme dánu hmotnost W[i] a cenu P[i]. Je dána kapacita C. Úkolem je najít takovou podmnožinu množiny úkolů, pro niž platí a zároveň je celková cena batohu je co největší (x je vektor; je-li x[i] = 1, pak i-tý předmět do dané podmnožiny patří, je-li x[i] = 0, pak do ní nepatří). Pro řešení této úlohy pomocí hladového algoritmu stačí setřídit předměty podle rostoucího poměru cena/hmotnost, podmínka na množinu je, že součet hmotností předmětů musí být menší nebo roven C.
[editovat] Podívejte se také na
- matroidy