Glatte Muskulatur
aus Wikipedia, der freien Enzyklopädie
Die glatte Muskulatur ist das kontraktile Gewebe vieler Hohlorgane, Blut- und Lymphgefäße sowie anderer Strukturen im menschlichen Körper. Im Gegensatz zur quergestreiften Muskulatur ist sie nicht der willkürlichen Kontrolle unterworfen.
Inhaltsverzeichnis |
[Bearbeiten] Embryologie
Wie auch die Skelettmuskelzellen sind die Zellen der glatten Muskulatur mesodermalen Ursprungs.
[Bearbeiten] Histologie
Die Zellen sind 20 bis 200 µm (in der Gebärmutter einer Schwangeren bis zu 800 µm) lang und 3 bis 10 µm breit und von einer Basallamina umgeben. Der längliche Zellkern liegt in der Mitte der Zelle. Im Bereich der Kernenden konzentrieren sich Zellorganellen wie Mitochondrien, Ribosomen sowie das raue endoplasmatische Retikulum und Glykogen-Einlagerungen.
Im Gegensatz zur quergestreiften Muskulatur, die der regelmäßigen Anordnung der Myofibrillen ihren Namen verdankt, existiert eine derartige Anordnung von Filamenten in der glatten Muskelzelle nicht. Lichtmikroskopisch erscheint das Cytoplasma homogen. Hauptsächliche Filamente sind Actin, Myosin und zusätzlich Intermediärfilamente aus der Gruppe der Desmine (Desmin, Vimentin). Ein einzelnes Myosinfilament wird dabei von 13 bis 14 Actinfilamenten zu einer Art „Bündel“ gruppiert. Die Actin- und Intermediärfilamente befestigen sich an sogenannten „dense bodies“ (auch Verdichtungszone genannt), welche mit den Z-Scheiben der quergestreiften Muskulatur vergleichbar sind, und an Anheftungsplaques am Rand der Zelle. Diese Anordnung der kontraktilen Elemente bedingt eine stärkere Fähigkeit zur Verkürzung der Muskelzelle, als dies beim quergestreiften Muskel möglich ist.
Das sarkoplasmatische Retikulum, welches in der Skelettmuskulatur prominent vertreten ist, kommt in der glatten Muskulatur in quantitativ sehr unterschiedlichen Ausprägungen vor. Eine Besonderheit dieses Muskeltyps stellen die sogenannten Caveolae dar, Einstülpungen der Zellmembran (Sarkolemm), welche mit der extrazellulären Matrix in Kontakt stehen und vermutlich an der elektromechanischen Kopplung beteiligt sind.
[Bearbeiten] Formen
Durch strukturelle Unterschiede und die daraus resultierenden funktionellen Unterschiede, ist eine Unterteilung des glatten Muskelgewebes in den Single unit- und den Multi unit-Typ möglich. Mischformen sind v. a. in der Gefäßmuskulatur häufig.
[Bearbeiten] Single unit-Typ
Der Single unit-Typ bildet durch gap junctions (Nexus) elektrisch gekoppelte Zellverbände aus. Über die gap junctions findet ein Austausch von Ionen und Second Messenger-Molekülen statt, was eine schnelle Ausbreitung der Erregung und somit eine nahezu synchrone Kontraktion des Zellverbandes („funktionelles Syncytium“) ermöglicht. Die Muskelzellen werden dabei nicht durch nervale Strukturen erregt, sondern durch die spontane Depolarisation morphologisch nicht abgrenzbarer Schrittmacherzellen (myogenener Tonus). Eine Modulation durch Fasern des vegetativen Nervensystems ist jedoch möglich.
Der Single unit-Typ kommt bevorzugt in der Muskulatur des Darms, der Gebärmutter (Uterus) und den Harnleitern (Ureter), teilweise aber auch in der muskulösen Wand größerer Gefäße vor.
[Bearbeiten] Multi unit-Typ
Eine von den Nachbarzellen abhängige Kontraktion finden beim Multi unit-Typ nicht bzw. nur sehr begrenzt statt. Jede Muskelzelle wird durch Nervenfasern des Vegetativen Nervensystems, welche in unmittelbarer Umgebung der Zelle aus Varikositäten Transmitter abgeben („en-passant-Synapse“), gesondert innerviert (neurogener Tonus).
Dieser Zelltyp kommt u. a. im Musculus arrector pili des Haares, den inneren Augenmuskeln, dem Samenleiter (Ductus deferens), im Bronchialsystem und in Gefäßen vor.
[Bearbeiten] Kontraktion
Der Mechanismus der Kontraktion der glatten Muskulatur entspricht im wesentlichen der Muskelkontraktion der quergestreiften Muskulatur. Der Gleitfilament-Mechanismus ist jedoch deutlich langsamer, verbraucht aber auch weniger Sauerstoff und weniger Energie in Form von ATP.
[Bearbeiten] Ablauf
Durch die auslösenden Vorgänge kommt es zu einem Anstieg der Ca2+-Konzentration im Zytosol durch hereinströmende Ionen aus dem Extrazellulärraum und zu einem deutlich geringeren Anteil aus dem sarkoplasmatischen Retikulum. Bis zu vier Ca2+-Ionen binden sich an das Protein Calmodulin. Der entstandene Ca2+-Calmodulin-Komplex führt zu einer Aktivierung des Enzyms Myosin-leichte-Ketten-Kinase (myosin light chain kinase, MLCK). Dieses Enzym spaltet in der aktivierten Form ATP und phosphoryliert die leichte Kette des Myosinmoleküls. Durch die Phosphorylierung kann der Querbrückenzyklus ablaufen.
Die Latenzzeit, welche die Zeitspanne zwischen aktivierendem Signal und Kontraktionsantwort des Muskels umfasst, beträgt bei diesem Muskeltyp rund 300 ms und kommt größtenteils durch die Diffusion des Kalziums in der Zelle und den beschriebenen Mechanismus der Aktivierung zustande.
[Bearbeiten] Relaxation
Zur Entspannung (Relaxation) kommt es durch einen sinkenden Ca2+-Spiegel, ausgelöst durch das Ausbleiben von Nervenreizen bzw. anderer erregender Vorgänge. Kalzium wird durch Na+/Ca+-Antiporter und Ca2+-ATPasen aus dem Innenraum der Zelle zurück in den Extrazellulärraum bzw. das sarkoplasmatische Retikulum transportiert. Der Ca2+-Calmodulin-Komplex dissoziiert und das Enzym Myosinphosphatase dephosphoryliert die leichten Ketten des Myosinmoleküls.
[Bearbeiten] Funktion
Glatte Muskulatur kann aufgrund ihrer Struktur und der beschriebenen Vorgänge bei der Kontraktion einen langanhaltenden Tonus (tonische Dauerkontraktion) aufrechterhalten. Sowohl die Peristaltik in Magen, Darm und Harnwegen als auch die Blutdruckregulation in den Innenwänden der Arterien beruhen auf der Wirkung glatter Muskulatur. Während der Geburt ermöglicht sie die rhythmische Kontraktion (phasisch-rhythmische Kontraktion) der Gebärmutter (Wehen).
[Bearbeiten] Matrixproduktion
Glatte Muskelzellen sind zur Synthese von Kollagen und anderen Bestandteilen der extrazellulären Matrix, wie z. B. Proteoglykanen, Elastin und Laminin, befähigt.
Siehe auch: Myofibroblast