Sonda Huygens
De Wikipedia, la enciclopedia libre
La sonda Huygens, fabricada por la Agencia Espacial Europea (ESA) y llamada así por el astrónomo holandés del siglo XVII Christiaan Huygens, (descubridor de la luna Titán del planeta Saturno), es una sonda de entrada a la atmósfera de Titán transportada como parte de la misión Cassini/Huygens. La nave espacial Cassini-Huygens fue lanzada desde la Tierra el 15 de octubre de 1997. Huygens se separó del orbitador Cassini el 25 de diciembre del 2004, y aterrizó en Titán el 14 de enero, del 2005 cercano a la región de Xanadu.
Tabla de contenidos |
[editar] Descripción
La sonda Huygens fue concebida para explorar las nubes, la atmósfera y la superficie de Titán, la mayor luna de Saturno penetrando en la atmósfera de Titán y llevando un laboratorio robotizado a la superficie. Cuando se planeó la misión, se desconocía el tipo de superficie que Titán podía tener. En los meses previos al aterrizaje de la sonda se confiaba en que el análisis de los datos de Cassini ayudaría a responder esta cuestión. La mayor de las incertidumbres iniciales era saber si la sonda se posaría sobre terreno sólido o sobre la superficie de un lago o mar de hidrocarburos.
Basándose en las imágenes tomadas por Cassini, a unos 1200 km de distancia de Titán, el sitio de aterrizaje aparentaba ser una costa. Asumiendo que el sitio de aterrizaje no sería sólido, la sonda Huygens fue diseñada para sobrevivir varios minutos al impacto con la superficie líquida y enviar información acerca de las condiciones encontradas. Se esperaba que fuese la primera vez que una sonda humana amerizase en un océano no terrestre. La sonda disponía tan sólo de unas tres horas de energía en sus baterías de las cuales una mayoría se gastaría durante el descenso. Los ingenieros esperaban obtener como máximo 30 minutos de datos desde la superficie.
La sonda Huygens consiste en la sonda en sí misma, que descendió sobre Titán, y el 'Equipo de Soporte de la Sonda' (PSE), que permanece anclado a la sonda orbital (Cassini). El PSE incluye la electrónica necesaria para seguir a la sonda, recuperar los datos adquiridos durante el descenso, y procesar y enviar los datos al orbitador, desde donde fueron transmitidos a tierra.
La sonda permaneció dormida durante el viaje interplanetario de 6.7 años, excepto por chequeos bianuales cuyos resultados se transmitían hasta la Tierra para su análisis por los expertos de sistemas y carga de pago de la ESA.
Antes de la separación de la sonda del orbitador, el 25 de diciembre del 2004 se ejecutó un chequeo final de 'salud'. Un temporizador fue cargado con el periodo de tiempo necesario para encender los sistemas de la sonda (15 minutos antes de su encuentro con la atmósfera de Titán) y entonces la sonda se desacopló del orbitador y navegó por el espacio hasta Titán durante 22 días, con los sistemas apagados excepto el temporizador para 'despertar'.
La fase principal de la misión consistió en descenso en paracaídas a través de la atmósfera de Titán. Las baterías y todos los recursos fueron dimensionados para una duración estimada de 153 minutos, correspondientes a un tiempo de descenso máximo de 2.5 horas más 3 minutos adicionales (posiblemente media hora o más) en la superficie de Titán. En enlace radio con la sonda fue activado al principio de la fase de descenso, y el orbitador escuchó a la sonda durante las siguientes 3 horas. Poco después del fin de esta ventana de comunicación de 3 horas, la Antena de Alta Ganancia (HGA) de Cassini fue reorientada de Titán hacia la Tierra.
Grandes telescopios de la Tierra estaban también escuchando la transmisión de 10 vatios de Huygens usando una técnica de 'interferometría de muy amplia base' y modo de apertura sintético. A las 11:25 CET del 14 de enero, el telescopio Robert C. Byrd Green Bank (GBT) en Virginia detectaba la señal portadora de la sonda. El GBT continuó detectando la señal incluso después de que Cassini dejase de escuchar. Además del GBT, otros ocho de los diez telescopios VLBA también estaban escuchando la señal de la Huygens.
La fuerza de la señal de Huygens recibida en la Tierra fue comparable a aquella de la sonda Galileo tal como fue recibida por la red VLA.
Se espera que el análisis de desplazamiento Doppler de la señal según descendía en la atmósfera de Titán permitirá calcular la intensidad del viento y su dirección con cierta precisión. A través de la interferometría, se espera también que se pueda determinar la posición del punto de aterrizaje con un error de 1 km a una distancia de la Tierra de 1200 millones de kilómetros. Esto es una resolución angular de aproximadamente 170 segundos de arco. Una técnica similar fue usada para determinar el lugar de aterrizaje de los Mars Exploration Rovers.
[editar] Investigación
Resultados preliminares confirman que la región donde aterrizó Huygens queda en efecto cercano a la ribera de un océano líquido llamada. Las fotos indican la existencia de canales de drenaje cercano a tierra firme, y lo que parece ser una mar de metano, incluso islas y una ribera tapada de bruma.
Los instrumentos revelaron "una nube densa o una niebla gruesa aproximadamente 18-20 kilómetros de la superficie" que es probablemente el fondo del metano que está sobre la superficie. Las fotografías han revelado un terreno esponjoso.
Huygens también ha captado sonidos durante más de dos horas y media en el satélite.
Conclusiones de los descubrimientos de Huygens tras alunizar en la luna Titán:
- Titán contiene océanos, lagos y ríos de metano líquido y éstos son alimentados por lluvias, también de metano líquido y fragmentos orgánicos.
Estas lluvias y evaporaciones de metano cubren el cuerpo celeste de una tenue niebla . Estas superficies de metano incluyen entre ellas islas y zonas de profundidad. El metano erosiona en paisaje como en la Tierra y luego se filtra. Estas lluvias sólo se producen desde hace unos pocos millones de años (una incógnita).
- La superficie sólida de Titán es naranja, esponjosa, muy fría y con algunas rocas dispersas sobre ella. Se ha dicho que debe imaginarse como un desierto parecido al de Arizona.
La superficie misma parece consistir en un material como arcilla y los científicos la compararon con yogur.
- Pudo haber algo parecido a actividad volcánica en el pasado, sólo que en lugar de lava las erupciones habrían sido de hielo y amoniaco.
- En el cuerpo celeste se pueden detectar vientos que van en la dirección en la que el satélite rota, siendo en la superficie en torno a los 100 a 60 km/h de veloces.
- El satélite se encuentra a una temperatura de -180 Cº.
- En Titán hay actividad geológica interna.
- En el satélite se pueden encontrar pedruscos de hielo.
[editar] Instrumentación
La sonda Huygens tiene seis complejos instrumentos a bordo que tomarán un amplio rango de datos científicos después de que la sonda descienda en la atmósfera de Titán. Los seis instrumentos son:
[editar] Huygens Atmospheric Structure Instrument (HASI)
Este instrumento contiene un conjunto de sensores que medirán las propiedades eléctricas y físicas de la atmósfera de Titan. Unos acelerómetros medirán las fuerzas experimentadas en los tres ejes durante el descenso a través de la atmósfera. Dado que se conocen las propiedades aerodinámicas de la sonda, será posible determinar la densidad de la atmósfera de Titán y detectar corrientes de aire. Si se aterriza en una superficie líquida, también se podrían medir el movimiento de la sonda debido a las olas. Sensores de presión y temperatura medirán las propiedades térmicas de la atmósfera. El componente de Permitividad y el Componente de Análisis de Onda medirán la conductividad de la atmósfera y buscarán actividad de ondas electromagnéticas. En la superficie de Titán, también se medirán la conductividad y la permitividad. El subsitema HASI también contiene un micrófono que grabará sonidos durante el descenso y aterrizaje. Si la misión Huygens tiene éxito, será la segunda vez en la historia (una nave Venera_13 fue la primera) que se graben sonidos de otro planeta.
[editar] Doppler Wind Experiment (DWE)
Este experimento usa un ultra estable oscilador para mejorar la comunicación con la sonda dándo una frecuencia muy estable a la portadora. El desplazamiento de la sonda debido a los vientos en la atmósfera de Titan producirá un desplazamiento dopler medible de la señal portadora. Desafortunadamente, los investigadores no recibieron los datos de este instrumento por causa de un error de programación que resultó en la pérdida de uno de los canales de datos. Este fallo también resultó en la pérdida de la mitad de las imágenes del descenso. Sin embargo, el análisis de las señales de 10 vatios recibidas en la tierra por una red mundial de radiotelescopios debe permitirnos deducir la mayor parte de la información que hubiera proveido el DWE.
[editar] Descent Imager/Spectral Radiometer (DISR)
Este instrumento realizará observaciones espectrales usando diversos sensores. Midiendo el flujo de radiación hacia arriba y abajo, se medirá el balance de radiación (o el imbalance) de la gruesa atmosfera de Titán. Sensores solares medirán la intensidad de luz alrededor del Sol debido a la dispersión por aerosoles en la atmósfera. Esto permitirá el cálculo del tamaño y la densidad de las partículas en suspensión. Dos cámaras (una visible, otra infrarroja), observarán la superficie durante las últimas fases del descenso, y dado que la sonda girará lentamente, construirán un mosaico de fotografías alrededor del sitio de aterrizaje. También se tomarán imágenes laterales para obtener una vista horizontal del horizonte y el lado inferior de la capa de nubes. Para las medidas espectrales de la superficie, una lámpara que se encenderá brevemente antes del aterrizaje aumentará la débil luz solar.
[editar] Gas Chromatograph Mass Spectrometer (GC/MS)
Este instrumento es un versátil analizador químico de gases diseñado paara identificar y medir compuestos químicos en la atmósfera de Titán. Está equipado con muestreadores que se llenarán a alta altitud para su análisis. El espectrómetro de masas construirá un model de las masas moleculares de cada gas, y una más potente separación de especies moleculares se logrará con el cromatrografo de gases. Durante el descenso, el GCMS analizará también productos de pirólisis (es decir, muestras alteradas por calentamiento) recolectadas por el Aerosol Collector Pyrolyser. Finalmente, el GCMS medirá la composición de la superficie de Titán si se da un aterrizaje seguro. Esta investigación es posible al calentar el GCMS justo antes del impacto para vaporizar el material de la superficie después del impacto.
[editar] Aerosol Collector and Pyrolyser (ACP)
Este experimento hará pasar particulas de aerosoles de la atmósfera a través de filtros, que después se calientan en hornos (el proceso de pirólisis para vaporizar los componentes volatiles y descomponer los materiales orgánicos complejos. Los productos se envián luego a través de una tubería al GCMS para su análisis. Existen dos filtros para recoger muestras a distintas altitudes.
[editar] Surface-Science Package (SSP)
El SSP contiene diversos sensores diseñados para determinar las propiedades físicas de la superficie de Titán en el punto de impacto, sea la superficie líquida o sólida. Un sonar acústico, activado durante los últimos 100 m del descenso, medirá continuamente la distancia a la superficie, midiendo la velocidad de descenso y la rugosidad de la superficie (por ejemplo, debido a olas). Si la superficie es líquida, el sonar medirá la velocidad del sonido en el "océano" y posiblemente la estructura por debajo de la superficie (profundidad). Durante el descenso, las medidas de la velocidad del sonido darán información de la composición y temperatura de la atmósfera y un acelerómetro medirá con precisión el pérfil de la deceleración durante el impacto, indicando la dureza y estructura de la superficie. Otro sensor medirá cualquier movimiento pendular durante el descenso e indicara la orientación de la sonda después del aterrizaje y mostrará cualquier movimiento debido a olas. Si la superficie es realmente líquida, otros sensores medirán su densidad, temperatura y reflexión a la luz, conductividad térmica, capacidad calorífica y permitividad eléctrica.
[editar] Diseño de la nave
[editar] Paracaídas
Martin-Baker Space Systems es el responsable del paracaídas de la Huygens y los componentes estructurales, mecanismos y pirotécnicos que controlan el descenso de la sonda en Titán. IRVIN-GQ es el responsable de la definición de la estructura de los paracaídas de la Huygens.
[editar] Un fallo crítico en el diseño
Largo tiempo después del lanzamiento, unos tenaces ingenieros descubrieron que el equipo de comunicación de la Cassini tenía un fallo crítico de diseño, que hubiese causado la pérdida de todos los datos transmitidos por la sonda Huygens.
Dado que Huygens es demasiado pequeña para transmitir directamente a la tierra, esta diseñada para transmitir por radio a la Cassini la telemetría obtenida durante el descenso, que a su vez la retransmite a la Tierra usando su antena principal de 4 metros de diámetro. Algunos ingenieros, entre los que se puede mencionar a los empleados de la ESA en Darmstadt Claudio Sollazzo y Boris Smeds se sentían intranquilos sobre el hecho de que, en su opinión, esta característica no había sido probada antes del lanzamiento en condiciones realistas. Smeds logró, con ciertas dificultades, convencer a sus superiores para ejecutar tests adicionales mientras la Cassini estaba en vuelo. A principios del 2000, envió datos simulados de telemetría a varios grados de potencia y desplazamiento Doppler desde la Tierra a la Cassini. Sucedió que la Cassini fue incapaz de retransmitir los datos correctamente.
La razón: cuando Huygens desciende a Titán, acelera relativamente a la Cassini, causando que su señal se desplace debido al efecto Doppler. De esta manera, el hardware de Cassini' fue diseñado para recibir en un rango de frecuencias desplazado. Sin embargo, el el firmware no fue diseñado teniendo en cuenta que el efecto Doppler no sólo cambia la frecuencia portadora, sino también el timing de los bits, codificados a 8192 bits por segundo, y esto no era tenido en cuenta por la programación del módulo.
Reprogramar el firmware era imposible y como solución la trayectoria tuvo que ser cambiada. Huygens se separó un mes después (diciembre del 2004 en vez de noviembre) y se aproximó a Titán en un rumbo tal que sus transmisiones viajan perpendicularmente a su dirección de movimiento respecto a la Cassini', reduciendo grandemente el desplazamiento Doppler. (Ver IEEE Spectrum artículo [1] para la historia completa.)
El cambio de trayectoria anuló el fallo de diseño y la transmisión se realizó con éxito.
[editar] Véase también
[editar] Enlaces externos
- European Space Agency Saturn page
- ESA Huygens Homepage
- Interactive Flash-Animation of Cassini orbits through 2008
- NASA's Cassini-Huygens page
- New Scientist — Cassini-Huygens: Mission to Saturn
- Raw images from descent
- Amateur compositions of images, preceding NASA and ESA releases
- Animation of raw images on ground
- Latest News on the Huygens Probe
- Planetary Society's Huygens Weblog
- Planetary Society's Sounds from the Huygens "Microphone"