Équation aux dérivées partielles
Un article de Wikipédia, l'encyclopédie libre.
NB : En cours de traduction d'après l'article anglais Partial differential equation
En mathématiques, plus précisément en calcul différentiel, une équation aux dérivées partielles ou équation différentielle partielle (EDP) est une équation dont les solutions sont les fonctions inconnues vérifiant certaines conditions concernant leurs dérivées partielles.
Une EDP a souvent de très nombreuses solutions, les conditions étant moins strictes que dans le cas d'une équation différentielle ordinaire (à une seule variable) ; les problèmes incluent souvent des conditions aux limites qui restreignent l'ensemble des solutions. Alors que les ensembles de solutions d'une équation différentielle ordinaire sont paramétrées par un ou plusieurs paramètres correspondant aux conditions supplémentaires, dans le cas des EDP les conditions aux limites se présentent plutôt sous la forme de fonction ; intuitivement cela signifie que l'ensemble des solutions est beaucoup plus grand, ce qui est vrai dans la quasi-totalité des problèmes.
Les EDP sont omniprésentes dans les sciences, puisqu'elles apparaissent aussi bien en dynamique des structures, mécanique des fluides que dans les théories de la gravitation ou de l'électromagnétisme (équations de Maxwell). Elles sont primordiales dans des domaines tels que la simulation aéronautique, la synthèse d'images, ou la prévision météorologique. Enfin, les équations les plus importantes de la relativité générale et de la mécanique quantique sont également des EDP.
L'un des dix problèmes à un million de dollars proposés par la fondation Clay consiste à montrer l'existence et la continuité par rapport aux données initiales d'un système d'EDP appelé équations de Navier Stokes. Ces équations servent énormément dans la mécanique des fluides.
Article d' Analyse vectorielle |
Équation aux dérivées partielles |
Équation de Laplace |
Équation de Poisson |
Théorème de Green |
Théorème de Stokes |
Electrostatique
|
Opérateurs |
Nabla |
Laplacien |
Gradient
|
en théorie physique |
groupe |
physique mathématique |
Modèle standard (physique) |
Sommaire |
[modifier] Notations et exemples
Pour les EDP, par souci de simplification, il est d'usage d'écrire u la fonction inconnue et Dxu (notation française) ou ux (notation anglo-saxonne, plus répandue) sa dérivée partielle par rapport à x, soit avec les notations habituelles du calcul différentiel :
et pour les dérivées partielles secondes :
[modifier] Équation de Laplace
L'équation de Laplace est une EDP de base très importante :
où u(x,y,z) désigne la fonction inconnue.
[modifier] Équation de propagation (ou équation des cordes vibrantes)
Cette EDP décrit les phénomènes de propagation des ondes sonores et des ondes électromagnétiques (dont la lumière). La fonction d'onde inconnue est notée u(x,y,z,t), t représentant le temps :
Le nombre c représente la célérité ou vitesse de propagation de l'onde u.
[modifier] Équation de Fourier
Cette EDP est également appelé équation de la chaleur. La fonction u représente la température. La dérivée d'ordre 1 par rapport au temps traduit l'irréversibilité du phénomène. Le nombre α est appelé diffusivité thermique du milieu.
[modifier] Équation de Schrödinger
[modifier] Liens
[modifier] Bibliographie
- Lars Hörmander ; The analysis of linear partial differential operators, Springer-Verlag (1983 à 1985). Traité de référence en quatre volumes, par le récipiendaire de la médaille Fields 1962. Le volume I est sous-titré : Distribution theory and Fourier analysis, et le volume II : Differential operators with constant coefficients. Les volumes III et IV sont consacrés à la théorie moderne via les opérateurs pseudo-différentiels.
- Lars Hörmander ; Linear Partial Differential Operators, Springer-Verlag (1963). Le livre qui contient les travaux pour lesquels l'auteur a obtenu la médaille Fields en 1962.
- Yu.V. Egorov & M.A. Shubin ; Foundations of the Classical Theory of Partial Differential Equations, Springer-Verlag (2ème édition - 1998), ISBN 3-540-63825-3. Premier volume d'une série qui en comporte neuf, écrits pour l' Encylopaedia of Mathematical Sciences. Les volumes suivants sont consacrés à la théorie moderne via les opérateurs pseudo-différentiels.
- Michael E. Taylor ; Partial Differential Equations - Basic Theory, Series: Texts in Applied Mathematics, Vol. 23, Springer-Verlag (2ème édition - 1999), ISBN 0-387-94654-3. Premier volume d'une série qui en comporte trois. Les volumes suivants sont consacrés à la théorie moderne via les opérateurs pseudo-différentiels.
- Vladimir I. Arnold ; Lectures on partial differential equations, Springer-Verlag (2004), ISBN 3-540-40448-1.
Portail des mathématiques – Accédez aux articles de Wikipédia concernant les mathématiques. |