Project Gutenberg
Contents Listing Alphabetical by Author:
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z Unknown Other
Contents Listing Alphabetical by Title:
# A B C D E F G H I J K L M N O P Q R S T U V W Y Z Other

Amazon - Audible - Barnes and Noble - Everand - Kobo - Storytel 

See also ebooksgratis.com: no banners, no cookies, totally FREE.

CLASSICISTRANIERI HOME PAGE - YOUTUBE CHANNEL
Privacy Policy Cookie Policy Terms and Conditions
Adres IP - Wikipedia, wolna encyklopedia

Adres IP

Z Wikipedii

Spis treści

Adres IP – liczba nadawana interfejsowi sieciowemu, grupie interfejsów (broadcast, multicast), bądź całej sieci komputerowej opartej na protokole IP, służąca identyfikacji elementów warstwy trzeciej modelu OSI - w obrębie sieci oraz poza nią (tzw. adres publiczny).

Adres IP nie jest "numerem rejestracyjnym" komputera - nie identyfikuje jednoznacznie fizycznego urządzenia - może się dowolnie często zmieniać (np. przy każdym wejściu do sieci Internet), ustalenie prawdziwego adresu IP użytkownika, do którego następowała transmisja w danym czasie jest możliwe dla systemu/sieci odpornej na przypadki tzw. IP spoofingu (por. man in the middle, zapora sieciowa, ettercap) - na podstawie historycznych zapisów systemowych.

W najpopularniejszej wersji czwartej (IPv4) jest zapisywany zwykle w podziale na oktety w systemie dziesiętnym (oddzielane kropkami) lub rzadziej szesnastkowym bądź dwójkowym (oddzielane dwukropkami bądź spacjami).

[edytuj] IP a pozostałe warstwy

W przeciwieństwie do adresu sprzętowego (MAC; warstwa druga modelu OSI) adres IP nie musi identyfikować jednoznacznie urządzenia ani w czasie, ani fizycznie (szczególnie, jeśli nie należy on do zakresu publicznego – jest adresem podlegającym translacji, bądź jest przydzielany dynamicznie). Protokół komunikacyjny IP pracuje w trzeciej warstwie modelu (warstwie sieciowej) niezależnie od rodzaju nośnika warstwy pierwszej. Jest trasowalny (routowalny), a więc umożliwia trasowanie (routing), które odbywa się właśnie w warstwie trzeciej. Aby zapewnić pomyślność komunikacji w tym protokole konieczne jest przyporządkowanie adresów IP interfejsom sieciowym urządzeń.

Z warstwą łącza danych, drugą warstwą rzeczonego modelu, komunikuje się zwykle za pomocą protokołów ARP i RARP. Pierwszy z nich informuje warstwę trzecią o adresie sprzętowym urządzenia, drugi umożliwia wskazanie adresu IP urządzenia przy znajomości adresu sprzętowego.

Protokół IP gwarantuje jedynie odnalezienie interfejsu lub grupy interfejsów sieciowych w pewnej sieci, jednak nie zapewnia poprawności transmisji danych. Współpracę z czwartą we wspomnianym modelu OSI warstwą transportową, która służy właśnie temu celowi, umożliwia m.in. protokół TCP w niej działający. Z tego powodu powstał protokół TCP/IP będący kombinacją m.in. tych dwóch protokołów.

Adresy IP stosuje się nie tylko w Internecie, ale również w sieciach lokalnych korzystających z TCP/IP. W pierwszym przypadku przypisywany jest on przez dostawcę internetu, w drugim o poprawne jego przypisanie dba zwykle jej administrator.

W celu zapewnienia jednoznaczności rozpoznawania się poszczególnych uczestników komunikacji stosuje się system odwzorowania unikatowej nazwy symbolicznej do adresów IP (protokół DNS), dzięki czemu użytkownicy Internetu nie muszą ich pamiętać i aktualizować. Np. adresowi 208.80.152.2 odpowiada obecnie interfejs sieciowy urządzenia/urządzeń (por. redundancja) obsługujących serwis Wikipedii. Aby korzystać z encyklopedii: wystarczy zapamiętanie łatwiejszej nazwy wikipedia.org, która tłumaczona jest na adres IP serwera przez serwery DNS (piąta warstwa modelu OSI nazywana warstwą aplikacji).

[edytuj] Rodzaje

Zobacz więcej w osobnych artykułach: IPv4, IPv5, IPv6.

Obecnie w Internecie używane są adresy IP protokołu w wersji czwartej, IPv4. Zapotrzebowanie na adresy IPv4 stało się na tyle duże, że pula nieprzydzielonych adresów zaczyna się wyczerpywać, z tego powodu powstała nowa, szósta wersja protokołu – IPv6. Piąta wersja, IPv5 mająca rozszerzyć możliwości poprzedniczki nie zdobyła popularności, protokół ten znany jest szerzej pod angielską nazwą Internet Stream Protocol (pol. „protokoł strumieni internetowych”), skracaną do ST.

Stub sekcji Ta sekcja jest zalążkiem. Jeśli możesz, rozbuduj ją.

[edytuj] Zapis

Zobacz więcej w osobnych artykułach: IPv4, IPv6.

Adresy IPv4 są 32-bitowymi liczbami całkowitymi. Tak więc adres serwisu działający pod adresem wikipedia.org to liczba 3 494 942 722, która w zapisie szesnastkowym ma postać D0 50 98 02. Adres w postaci szesnastkowej zapisywany jest zwykle jako D0:50:98:02, z której łatwo przekształcić go na łatwiejszą do zapamiętania formę dziesiętną, oddzielaną już kropkami: 208.80.152.2 (każdą z liczb szesnastkowych zamienia się na jej dziesiętny odpowiednik z zakresu 0-255). Adresy IP w postaci dwójkowej wykorzystywane są niezmiernie rzadko, najczęściej do wyznaczenia maski sieci lub maski podsieci, powyższy adres w postaci dwójkowej to

11001111 10001110 10000011 11101100.

Adresy IPv6 są 128-bitowymi liczbami całkowitymi, dlatego przykładowy adres sieci IPv6 w zapisie szesnastkowym, zgodnym ze specyfikacją Media:CIDR, która dotyczy również IPv4 (RFC1518, RFC1519, RFC1812), wygląda następująco:

3ffe:0902:0012:0000:0000:0000:0000:0000/48,

gdzie /48 oznacza długość pierwszego prefiksu wyrażoną w bitach (człony adresu grupuje się po 16 bitów i oddziela dwukropkiem).

Przyjmuje się, że najstarsze niepodane bity danej sekcji są zerami (np. :: oznacza :0000:), dlatego jego skrócona wersja to 3ffe:902:12::/48. Adres IPv6 w zapisie dziesiętnym byłby cztery razy dłuższy, a więc składałby się z 16 liczb dziesiętnych z zakresu 0-255.

[edytuj] Bibliografia

  • RFC 791 (grupa anonimowych autorów z Information Sciences Institute, University of Southern California, Internet Protocol, IETF, wrzesień 1981),
  • RFC 1349 (Philip Almquist, Type of Service in the Internet Protocol Suite, IETF, lipiec 1992),
  • RFC 1519 (V. Fuller, T. Li, J. Yu, K. Varadhan, Classless Inter-Domain Routing (CIDR): an Address Assignment and Aggregation Strategy, IETF, wrzesień, 1993) – adresy IPv4,
  • RFC 1918 (Y. Rekhter, B. Moskowitz, D. Karrenberg, G. J. de Groot, E. Lear, Address Allocation for Private Internets, IETF, luty 1996) – adresy prywatne IPv4,
  • RFC 2373 (R. Hinden, S. Deering, IP Version 6 Addressing Architecture, IETF, lipiec 1998) i poprawki: RFC 3513 (idem, IETF, kwiecień 2003), RFC 4291 (idem, IETF, luty 2006) – adresy IPv6.

[edytuj] Zobacz też

Static Wikipedia (no images) - November 2006

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - be - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - closed_zh_tw - co - cr - cs - csb - cu - cv - cy - da - de - diq - dv - dz - ee - el - eml - en - eo - es - et - eu - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gd - gl - glk - gn - got - gu - gv - ha - haw - he - hi - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mg - mh - mi - mk - ml - mn - mo - mr - ms - mt - mus - my - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - rm - rmy - rn - ro - roa_rup - roa_tara - ru - ru_sib - rw - sa - sc - scn - sco - sd - se - searchcom - sg - sh - si - simple - sk - sl - sm - sn - so - sq - sr - ss - st - su - sv - sw - ta - te - test - tet - tg - th - ti - tk - tl - tlh - tn - to - tokipona - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu