Lepkość
Z Wikipedii
Lepkość (tarcie wewnętrzne) - właściwość płynów i plastycznych ciał stałych charakteryzująca ich opór wewnętrzny przeciw płynięciu. Lepkością nie jest opór przeciw płynięciu powstający na granicy płynu i ścianek naczynia. Lepkość jest jedną z najważniejszych cech płynów (cieczy i gazów).
Inne znaczenie słowa "lepkość" odnosi się do "czepności" - terminu stosowanego w dziedzinie klejów.
Zgodnie z laminarnym modelem przepływu lepkość wynika ze zdolności płynu do przekazywania pędu pomiędzy warstwami poruszającymi się z różnymi prędkościami.
Różnice w prędkościach warstw są charakteryzowane w modelu laminarnym przez szybkość ścinania. Przekazywanie pędu zachodzi dzięki pojawieniu się na granicy tych warstw naprężeń ścinających. Wspomniane warstwy są pojęciem hipotetycznym, w rzeczywistości zmiana prędkości zachodzi w sposób ciągły (zobacz: gradient), a naprężenia można określić w każdym punkcie płynu. Model laminarny lepkości zawodzi też przy przepływie turbulentnym, powstającym np. na granicy płynu i ścianek naczynia. Dla przepływu turbulentnego jak dotąd nie istnieją dobre modele teoretyczne.
Płyn nielepki to płyn o zerowej lepkości (→ nadciekłość).
Istnieją dwie miary lepkości:
[edytuj] Lepkość dynamiczna
Lepkość dynamiczna wyraża stosunek naprężeń ścinających do szybkości ścinania:
Jednostką lepkości dynamicznej w układzie SI jest paskal·sekunda o wymiarze kilogram·metr-1·sekunda-1
W układzie CGS jednostką lepkości dynamicznej jest puaz (P).
[edytuj] Lepkość kinematyczna
Lepkość kinematyczna, nazywana też kinetyczną, jest stosunkiem lepkości dynamicznej do gęstości płynu:
Jednostką lepkości kinematycznej w układzie SI jest: metr2·sekunda-1.
Dziedziną nauki zajmującą się badaniami nad lepkością jest reologia. Pomiary lepkości prowadzi się na wiskozymetrach i reowiskozymetrach.
Współczynnik lepkości dynamicznej dla rozrzedzonych gazów doskonałych jest proporcjonalny do pierwiastka z temperatury (jest to wynikiem ruchu cząsteczek gazów), a nie zależy od ciśnienia. Dla cieczy współczynnik ten jest odwrotnie proporcjonalny do temperatury, a rośnie wraz ze wzrostem ciśnienia (jest to spowodowane oddziaływaniem międzycząsteczkowym).