See also ebooksgratis.com: no banners, no cookies, totally FREE.

CLASSICISTRANIERI HOME PAGE - YOUTUBE CHANNEL
Make a donation: IBAN: IT36M0708677020000000008016 - BIC/SWIFT:  ICRAITRRU60 - VALERIO DI STEFANO or
Privacy Policy Cookie Policy Terms and Conditions
Radioizotopowy generator termoelektryczny - Wikipedia, wolna encyklopedia

Radioizotopowy generator termoelektryczny

Z Wikipedii

RTG zastosowanyw sondach Voyager
RTG zastosowanyw sondach Voyager

Radioizotopowy generator termoelektryczny lub Radioizotopowa bateria termoelektryczna (ang. Radioisotope thermoelectric generator, RTG) – generator prądu elektrycznego, w którym źródłem energii jest rozpad izotopu promieniotwórczego, a wydzielone w ten sposób ciepło zamieniane jest na energię elektryczną. Baterie tego typu są używane głównie jako źródła zasilania w satelitach i nienadzorowanych urządzeniach pracujących zdalnie (boje, latarnie morskie itp.).

Spis treści

[edytuj] Zasada działania

Materiał radioaktywny (paliwo) jest umieszczony w pojemniku do którego wprowadzony jest jedno złącze termopary. Drugie złącze termopary wprowadzone jest do czynnika chłodzącego (np. przyłączony do radiatora). Rozpad radioaktywny uwalnia energię, która w wyniku zderzeń zmienia się w energię termiczną ogrzewającą jeden koniec termopary. Różnica temperatur między złączami, w wyniku efekt Seebecka, wywołuje siłę elektromotoryczną i przepływ prądu. Większe różnice temperatur powodują wytworzenie większej mocy.

Generatora nie należy mylić z baterią jądrową mającą odmienne działanie, mimo że energia w obu pochodzi z rozpadów promieniotwórczych.

[edytuj] Paliwo

Materiał radioaktywny używany w generatorze musi spełniać kilka warunków:

  • Postępujący rozpad radioaktywny paliwa zmniejsza ilość paliwa powodując zmniejszanie ilości wydzielanego ciepła. Stąd czas połowicznego rozpadu musi być na tyle długi, aby moc generatora nie malała szybko wraz z upływem czasu. Jednocześnie nie może być zbyt długi, gdyż ilość rozpadów w jednostce czasu będzie mała.
  • Do zastosowań kosmicznych paliwo musi być wydajne w stosunku do swojej masy i objętości.
  • Paliwo nie powinno emitować promieniowania o wysokiej przenikliwości wymagających dodatkowych osłon (ekranów ochronnych) jak promieniowanie gamma czy promienie X. Promieniowanie β jest również niekorzystne, gdyż może powodować emisję promieniowania gamma poprzez promieniowanie hamowania. W tym przypadku, optymalnymi są izotopy emitujące cząstki α.
  • Produkty rozpadu są także często promieniotwórcze i powinny spełniać wszystkie powyższe założenia.

Wszystkie te warunki ograniczają liczbę potencjalnych izotopów do 30. Najczęściej są stosowane 238Pu, 244Cm i 90Sr. Poza tym używane są 210Po, 147Pm, 137Cs, 144Ce, 106Ru, 60Co, 242Cm oraz izotopy Tulu. Spośród wymienionych pluton-238 ma najdłuższy czas rozpadu (87,7 lat), stosunkowo wysoką wydajność i najniższe wymagania co do osłon. Tylko trzy izotopy spełniają kryterium niskiej radiacji beta i gamma, potrzebują osłon ołowiowych grubości kilku cm. Pluton-238 wymaga osłony grubości jedynie kilku mm lub wcale (wystarcza po prostu osłona całej baterii).

Z tych powodów pluton jest najczęściej używanym izotopem w baterii. W instalacjach naziemnych Związek Radziecki używał strontu-90, który ma krótszy czas rozpadu (29 lat), niższą wydajność i emituje promieniowanie gamma, ale jest dużo tańszy. Używany w pierwszych konstrukcjach polon-210 posiada ogromną wydajność (140 W ciepła/g), ale ma bardzo krótki czas rozpadu (139 dni) i emituje promieniowanie gamma.

Izotop 241Am był również testowany. Jego okres rozpadu wynosi 432 lata, więc teoretycznie może zasilać baterię przez setki lat. Jednak jego wydajność to około 1/4 wydajności plutonu-238, a poza tym emituje więcej promieniowania gamma. Pod względem wymagań ekranowania (potrzebuje ekranów ołowianych grubości około 2 cm) stawia go to na drugim miejscu po plutonie-238.

RTG w sondzie Cassini-Huygens
RTG w sondzie Cassini-Huygens

[edytuj] Użycie

Stany Zjednoczone użyły po raz pierwszy RTG w satelicie nawigacyjnym Transit 4A w 1961 roku.

RTG są używane przede wszystkim na statkach kosmicznych, szczególnie tych, które podróżują na tyle daleko od Słońca, że baterie słoneczne nie spełniają swego zadania. Stąd zostały użyte w sondach Pioneer 10, Pioneer 11, Voyager 1, Voyager 2, Galileo, Ulysses, Cassini-Huygens, New Horizons, Viking i misjach Program Apollo 12-17.

Związek Radziecki wyprodukował także wiele bezzałogowych latarni morskich i boi nawigacyjnych zasilanych tego typu bateriami.

Miniaturowe wersje baterii były też stosowane w rozrusznikach serca.

[edytuj] Czas życia

Najbardziej popularny 238Pu ma czas rozpadu 87,7 lat. Stąd bateria używająca tego izotopu traci około 1-0,51/87,7 = 0,787% mocy na rok. 23 lata po wyprodukowaniu taka bateria będzie miała 0,523/87,7 = 0,834 początkowej mocy. Tak więc moc 470 W po 23 latach osłabnie do 0,834 * 470 W = 392 W. Dodatkowo, w miarę upływu czasu, termopary także się degenerują. Na początku 2001 roku moc produkowana przez RTG w sondzie Voyager 1 spadła do 315 W, a w Voyager 2 do 319 W. Oznacza to, że sprawność termopar spadła do 80% początkowego poziomu.

[edytuj] Zagrożenia

Należy zauważyć, że w RTG nie występują reakcje łańcuchowe (jak w reaktorach jądrowych), więc nie ma możliwości ani wybuchu, ani stopienia paliwa. W niektórych typach baterii nie występuje nawet rozszczepienie jądra. Tym samym paliwo jest zużywane powoli i jest produkowane dużo mniej energii.

Nie oznacza to, że baterie są całkowicie bezpieczne. Zawsze istnieje możliwość skażenia radioaktywnego w przypadku rozszczelnienia pojemnika paliwa. Problem jest szczególnie istotny w przypadku wynoszenia na orbitę pojazdów kosmicznych zawierających takie baterie.

Znane jest pięć wypadków związanych z użyciem RTG. Pierwsze dwa związane są z nieudanymi próbami wystrzelenia amerykańskich satelitów Transit i Nimbus. Dwa następne to nieudane radzieckie misje Kosmos (pojazdy księżycowe miały zasilanie RTG). Wreszcie misja Apollo 13, w której moduł księżycowy spłonął w atmosferze nad Fidżi. Sama bateria jednak ocalała i wpadła do Pacyfiku koło Tonga. Późniejsze badania nie stwierdziły jednak zwiększonej radioaktywności w tym regionie.

W celu minimalizacji zagrożeń paliwo jest przechowywane w mniejszych, ceramicznych kapsułach co uniemożliwia jego parowanie. Całość otoczona jest irydem i blokami grafitu. Wszystkie te materiały są odporne na korozję i ciepło.

Problem z urządzeniami naziemnymi jest związany przede wszystkim z radzieckimi bojami nawigacyjnymi i latarniami morskimi. Brak nadzoru powodował wycieki paliwa i kradzieże części. W dodatku niektóre z tych obiektów trudno odnaleźć z powodu braku lub utraty informacji dotyczących ich położenia.

Stosowanie baterii w rozrusznikach serca stwarza pewne zagrożenie w przypadku kremacji po śmierci właściciela bez wcześniejszego usunięcia baterii z ciała. Dlatego też obecne rozruszniki są zasilane bateriami wykonanymi w innych technologiach.

Jeśli chodzi o ewentualne skutki kradzieży plutonu-238, to nie nadaje się on do stworzenia bomby atomowej, gdyż zachodzą w nim samorzutne reakcje rozszczepienia, co może spowodować powstanie reakcji łańcuchowej zbyt wcześnie w procesie wybuchu (co spowoduje stopienie plutonu i przerwanie procesu). Dodatkowo jest to materiał gorący i radioaktywny co znacznie utrudnia z nim prace. Tym samym jest bezwartościowy dla ewentualnych terrorystów.

[edytuj] Zobacz też

[edytuj] Linki zewnętrzne


aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2007 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2006 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -