Przedział ufności
Z Wikipedii
Przedział ufności jest podstawowym narzędziem estymacji przedziałowej. Pojęcie to zostało wprowadzone do statystyki przez amerykańskiego matematyka polskiego pochodzenia Jerzego Spławę-Neymana.
Spis treści |
[edytuj] Definicja
Przedział ufności Niech cecha X ma rozkład w populacji z nieznanym parametrem θ. Z populacji wybieramy próbę losową (X1, X2, ..., Xn). Przedziałem ufności (θ - θ1, θ + θ2) o współczynniku ufności 1 - α nazywamy taki przedział (θ - θ1, θ + θ2), który spełnia warunek:
- P(θ1 < θ < θ2) = 1 − α
gdzie θ1 i θ2 są funkcjami wyznaczonymi na podstawie próby losowej.
Podobnie jak w przypadku estymatorów definicja pozwala na dowolność wyboru funkcji z próby, jednak tutaj kryterium wyboru najlepszych funkcji narzuca się automatycznie - zazwyczaj będziemy poszukiwać przedziałów najkrótszych.
Współczynnik ufności 1 - α jest wielkością, którą można interpretować w następujący sposób: jest to prawdopodobieństwo, że rzeczywista wartość parametru θ w populacji znajduje się w wyznaczonym przez nas przedziale ufności. Im większa wartość tego współczynnika, tym szerszy przedział ufności, a więc mniejsza dokładność estymacji parametru. Im mniejsza wartość 1 - α, tym większa dokładność estymacji, ale jednocześnie tym większe prawdopodobieństwo popełnienia błędu. Wybór odpowiedniego współczynnika jest więc kompromisem pomiędzy dokładnością estymacji a ryzykiem błędu. W praktyce przyjmuje się zazwyczaj wartości: 0,99; 0,95 lub 0,90, zależnie od parametru.
[edytuj] Przykłady przedziałów ufności
Ponieważ szukamy jak najkrótszych przedziałów ufności, dlatego przy wyznaczaniu przedziału staramy się wykorzystać jak najwięcej dostępnych informacji o rozkładzie cechy w populacji. Jeśli np. cecha ma rozkład normalny z odchyleniem standardowym σ, to zastosowanie wzoru na przedział ufności dla nieznanego σ również da poprawny wynik, jednak przedział otrzymany tą metodą będzie szerszy, czyli mniej dokładny. Z kolei wzory ogólniejsze, np. dla nieznanego rozkładu, często korzystają z rozkładów granicznych estymatorów i dlatego wymagają dużej liczebności próby.
[edytuj] Przedział ufności dla wartości oczekiwanej (średniej)
[edytuj] Rozkład normalny
[edytuj] Znane odchylenie standardowe
Cecha ma w populacji rozkład normalny N(m, σ), przy czym odchylenie standardowe σ jest znane. Przedział ufności dla parametru m tego rozkładu ma postać:
- lub równoznacznie:
gdzie:
- n to liczebność próby losowej
- oznacza średnią z próby losowej
- s to odchylenie standardowe z próby
- uα jest statystyką, spełniającą warunek:
- P( − uα < U < uα) = 1 − α gdzie U jest zmienną losową o rozkładzie normalnym N(0, 1).
- oraz to kwantyle rzędów odpowiednio i rozkładu N(0, 1)
[edytuj] Przedział ufności dla wariancji
Poniższy wzór pozwala wyznaczyć przedział ufności dla wariancji w populacji o rozkładzie normalnym N(m, σ)
gdzie:
- n to liczebność próby losowej
- s to odchylenie standardowe z próby
- i to statystyki spełniające odpowiednio równości:
gdzie χ2 ma rozkład chi-kwadrat z n - 1 stopniami swobody
[edytuj] Minimalna liczebność próby
Jeśli chcemy oszacować parametr z określoną dokładnością d, możemy, po odpowiednich przekształceniach wzorów na przedziały ufności, wyznaczyć liczebność próby losowej potrzebną do osiągnięcia zakładanej dokładności.
Przykład: Wiemy, że wzrost Wikipedystów ma rozkład normalny z odchyleniem standardowym 25,28 cm (dane chyba nieprawdziwe). Obliczmy ilu Wikipedystów wystarczy zmierzyć, aby z prawdopodobieństwem 95% wyznaczyć średni wzrost Wikipedysty z dokładnością do 5 cm.
Jeśli chcemy uzyskać dokładność 5 cm, należy zadbać o to, aby połowa długości przedziału ufności była mniejsza lub równa niż 5 cm. Ze wzoru na przedział ufności dla rozkładu normalnego o znanym odchyleniu standardowym wynika, że dokładność estymacji powinna spełniać zależność:
Przekształcamy podaną nierówność uzyskując pożądany wzór na liczebność próby:
Podstawiając do wzoru wartości σ = 25,28; d = 5 cm; uα = 1,96 (wartość obliczona na podstawie tablic rozkładu normalnego), uzyskujemy minimalną wielkość próby na poziomie 99 Wikipedystów.