อนุพันธ์
จากวิกิพีเดีย สารานุกรมเสรี
หัวข้อที่เกี่ยวข้องกับแคลคูลัส |
ทฤษฎีบทมูลฐานของแคลคูลัส | ฟังก์ชัน | ลิมิตของฟังก์ชัน | ความต่อเนื่อง | แคลคูลัสกับพหุนาม | ทฤษฎีบทค่าเฉลี่ย | แคลคูลัสเวกเตอร์ | แคลคูลัสเทนเซอร์ |
อนุพันธ์ |
กฎผลคูณ | กฎผลหาร | กฎลูกโซ่ | อนุพันธ์โดยปริยาย | ทฤษฎีบทของเทย์เลอร์ |
ปริพันธ์ |
การหาปริพันธ์โดยการแทนค่า | การหาปริพันธ์เป็นส่วน | การหาปริพันธ์โดยการแทนที่ฟังก์ชันตรีโกณมิติ | การหาปริพันธ์แบบจาน | การหาปริพันธ์ด้วยเชลล์ | การหาปริพันธ์แบบต่าง ๆ |
ในวิชาคณิตศาสตร์ อนุพันธ์ของฟังก์ชันเป็นมโนทัศน์หนึ่งในสองมโนทัศน์หลักของแคลคูลัส (อีกมโนทัศน์หนึ่งคือปฏิยานุพันธ์ ซึ่งคือตัวผกผันของอนุพันธ์)
อนุพันธ์ เป็นบทความเกี่ยวกับ คณิตศาสตร์ ที่ยังไม่สมบูรณ์ ต้องการตรวจสอบ เพิ่มเนื้อหา หรือเพิ่มแหล่งอ้างอิง คุณสามารถช่วยเพิ่มเติมหรือแก้ไข เพื่อให้สมบูรณ์มากขึ้น |
สารบัญ |
[แก้] การหาอนุพันธ์ และการหาอนุพันธ์ได้
[แก้] อัตราส่วนเชิงผลต่างของนิวตัน
อนุพันธ์ของฟังก์ชัน f ที่ x ในเชิงเรขาคณิต คือ ความชัน (slope) ของเส้นสัมผัส (tangent line) ของกราฟ f ที่ x. เราไม่สามารถหาความชันของเส้นสัมผัสจากฟังก์ชันที่กำหนดให้โดยตรงได้ เพราะว่าเรารู้เพียงจุดบนเส้นสัมผัส ซึ่งก็คือ (x, f(x)) เท่านั้น ในทางอื่น เราจะประมาณความชันของเส้นสัมผัสด้วยเส้นตัด (secant line) หลายๆเส้น ที่มีจุดตัดทั้ง 2 จุดอยู่ห่างกันเป็นระยะทางสั้น ๆ เมื่อหาลิมิตของความชันของเส้นตัดที่จุดตัดอยู่ใกล้กันมาก ๆ เราจะได้ความชันของเส้นสัมผัส ดังนั้น อาจนิยามอนุพันธ์ว่าคือ ลิมิตของความชันของเส้นตัดที่เข้าใกล้เส้นสัมผัส
เพื่อหาความชันของเส้นตัดที่จุดตัดอยู่ใกล้กันมาก ๆ ให้ h เป็นจำนวนที่มีค่าน้อยๆ h จะแทนการเปลี่ยนแปลงน้อยๆใน x ซึ่งจะเป็นจำนวนบวกหรือลบก็ได้ ดังนั้น ความชันของเส้นที่ลากผ่านจุด (x,f(x)) และ (x+h,f(x+h)) คือ
ซึ่งนิพจน์นี้ก็คือ อัตราส่วนเชิงผลต่างของนิวตัน (Newton's difference quotient). อนุพันธ์ของ f ที่ x คือ ลิมิตของค่าของผลหารเชิงผลต่าง ของเส้นตัดที่เข้าใกล้กันมากๆ จนเป็นเส้นสัมผัส:
[แก้] สัญกรณ์สำหรับการหาอนุพันธ์
[แก้] จุดวิกฤต
[แก้] อนุพันธ์ที่น่าจดจำ
- สำหรับกรณีทั่วไป:
- .
- สำหรับฟังก์ชันลอการิทึม:
- อนุพันธ์ของ ln x คือ .
- อนุพันธ์ของ
- สำหรับฟังก์ชันเลขชี้กำลัง:
- ex = ex
- สำหรับฟังก์ชันตรีโกณมิติ:
- .
- .
- .
- .
- .
- .
[แก้] ฟิสิกส์
[แก้] การจัดการทางพีชคณิต
สาวส งสยใวส