変圧器
出典: フリー百科事典『ウィキペディア(Wikipedia)』
変圧器(へんあつき、transformer)は、交流電力の電圧の高さを電磁誘導を利用して変換する電力機器・電子部品である。変成器(へんせいき)、トランスとも呼ぶ。
交流電圧の変換(変圧)、インピーダンス整合、平衡系-不平衡系の変換に利用する。
目次 |
[編集] 理論
[編集] 原理
入力巻線(一次巻線)の交流電流により変化する磁場を発生させ、それを相互インダクタンスで結合された出力巻線(二次巻線)に伝え、再び電流に変換している。
変圧器によって電圧を変更することを変圧(へんあつ)といい、電圧を上昇させることを昇圧(しょうあつ)、逆に下降させることを降圧(こうあつ)という。
[編集] 変圧比
一次電圧 V1 と二次電圧 V2 の比を変圧比(へんあつひ)という。 また、一次巻数 N1 と二次巻数 N2 の比を巻数比(まきすうひ)という。 変圧比と巻数比は等しい。
[編集] 変流比
一次電流 I1 と二次電流 I2 の比を変流比(へんりゅうひ)という。 変流比は、変圧比および巻数比の逆数に等しい。
[編集] 励磁電流
鉄心に主磁束を形成する電流が励磁電流(れいじでんりゅう)である。理想的な変圧器では、励磁電流の位相は一次電圧よりも 90° 遅れる。実際には鉄心の磁気飽和やヒステリシス現象により励磁電流の波形は主に奇数次の高調波ひずみを含む。
[編集] 損失
- 無負荷損(鉄損): 通電(励磁)している場合負荷の大きさに関係なく生じる損失。
- 負荷損 : 負荷電流の2乗にほぼ比例する損失である。
[編集] 設計
[編集] 定格
|
|
|
[編集] 鉄心・巻線
一次回路と二次回路を相互インダクタンスで結合する磁気回路として、通常は鉄心が用いられる。高周波用には鉄心を有しないものもあり原理的は変圧器と同じであるが、一般にコイルと呼ばれる。
変圧器の鉄心には鉄損が少なく、飽和磁束密度・透磁率の大きい材料が適しており、ケイ素鋼板が多く用いられ、特定の方向に磁化し易い方向性鋼板が採用されることも多い。また、特に損失の低減を図る目的でアモルファス磁性材料が用いられることもある。
渦電流損を低減させるため、表面を絶縁処理した薄い鋼板を積層したものや、帯状に圧延した鋼板を巻いた巻鉄心などがある。
巻線には絶縁被覆を有する軟銅線が用いられる。断面形状は一般的なものでは丸形だが、大型用は導体断面積を大きくできる角形となっている。一般には一次巻線を巻いた上に二次巻線を重ねる積層巻が行われるが、特に、信号用・高周波用変成器のように一次・二次の密な結合が必要な場合は、一次・二次の巻線を1本ずつ交互に配置するバイファイラ巻なども行われる。
また、複数の二次電圧が必要な場合や電圧の調整が必要な場合は、巻線の途中からタップと呼ばれる端子が取り出される。
鉄心と巻線の配置は以下の二種類ある。
- 内鉄形
-
- 鉄心の周りに低圧巻線、その周りに高圧巻線を配置する、同心円配置が多い。
- 鉄心より巻線が多くなり、銅機械となる。
- 絶縁のため高電圧に用いられる。
- 外鉄形
-
- 巻線の周りに鉄心を配置したものである。
- 鉄心の周りに低圧巻線・高圧巻線を交互に配置する、交互配置が多い。
- 巻線より鉄心が多くなり、鉄機械となる。
[編集] 絶縁物の種類
[編集] 保安装置
- 機械的保護
-
- ブッフホルツ継電器
- 衝撃油圧継電器
- 温度継電器
- 電気的保護
-
- 比率差動継電器
- 地絡継電器
- 過電流継電器
[編集] 変圧器の結線と種類
[編集] 単相変圧器
単相交流を入出力とするものである。
[編集] 三相変圧器
三相交流を入出力とするものである。
結線 | 線間電圧/相電圧 | 線電流/相電流 | 中性点接地 | 角変位 | 特徴・用途 |
---|---|---|---|---|---|
Δ - Δ | 1 | √3倍 | 不可 | 無 | 低電圧の回路で用いられる。 |
Y - Y - Δ | √3倍 | 1 | 一次、二次とも可能 | 無 | Δ結線の三次巻線に第三調波を流し誘導起電力を正弦波とする。 |
Y - Δ | 一次:√3倍 二次:1 |
一次:1 二次:√3倍 |
一次のみ可能 | 有 | 受電端に用いられる。 |
Δ - Y | 一次:1 二次:√3倍 |
一次:√3倍 二次:1 |
二次のみ可能 | 有 | 送電端に用いられる。 |
V - V | 1 | √3倍 | 不可 | 無 | 配電用柱上変圧器など。利用率が小さい。 Δ - Δ結線で1相が故障した場合の応急用にも用いられることがある。 |
[編集] スコット結線変圧器
三相交流から90度の位相差の2組の単相交流を出力するもので、2つの巻線を持つ。
一つの一次巻線の巻数をもう一方の巻線の倍としている。
鉄道の交流き電用変電所などに用いられる。
[編集] ウッドブリッジ結線変圧器
一次側はY巻線とし、二次側は2つのΔ巻線を背中合わせに接続した変圧器で、スコット結線と同様に三相交流から90度の位相差の2組の単相交流が得られるが、電圧を揃えるため一方の二次回路に単巻変圧器が併置される。 また、ウッドブリッジ結線の2つのΔ巻線と、外付けの単巻変圧器を一体化したものを変形ウッドブリッジ結線という。
多量の電力を扱う新幹線の交流き電用変電所では220kV系以上の超高圧送電線から受電しているが、保安上、一次回路の中性点接地が必要なため、変形ウッドブリッジ結線変圧器が用いられている。
[編集] 単巻変圧器
巻線の一部を一次と二次側とで共用するものである。オートトランス (automatic transformer) ともいう。共通部分を分路巻線(ぶんろまきせん)、そうでない部分を直列巻線(ちょくれつまきせん)という。
一次・二次電圧のうち高い方をVH・低い方をVLとした場合、一次・二次巻線を有する通常の変圧器に比べ、単巻変圧器は(VH-VL)/VH倍の容量で足りることとなり、メリットは変圧比(VH/VL)が1に近いほど顕著となる。
- 分路巻線に流れる電流は、一次側と二次側の差となるので巻数比が小さいほど細くできる。
- 分路巻線は漏れ磁束が無く、漏れリアクタンスが小さく、電圧変動率も小さくなる。
- 入力電圧と出力電圧との差の少ない用途に適する。
- 一次側と二次側を電気的に絶縁できない。
このような特徴から、単巻変圧器は長距離配電線の電圧降下補償などに用いられている。なお、三相交流の場合、Δ - Δ接続の単巻変圧器は一次・二次間に位相差が生じるので注意が必要である。
また、巻線に接触させた可動式摺動子から出力を取り出すことで電圧を可変できる単巻変圧器は俗にスライダックと呼ばれる(スライダック SLIDACは東芝の登録商標)。最近は、重量や価格の点で半導体による電圧調整装置が用いられることも多いが、出力電圧が波形ひずみを殆ど含まないことは、単巻変圧器の大きな特長である。
[編集] 磁気漏れ変圧器
一次・二次巻線を別々の鉄心に巻き、漏れ磁束のための磁気回路を設けたものである。負荷電流が増加しようとすると漏れ磁束の増加で電圧が低下し、負荷が変動しても電流が一定に保たれる。
蛍光灯用磁気安定器・ネオン管用変圧器・アーク溶接用変圧器などに用いられる。
[編集] 運用
[編集] 変圧器の並行運転
[編集] 変成器 (電子部品)
変成器(へんせいき)とは、電磁誘導を利用して複数の巻線の間でエネルギーの伝達を行う電子部品である。トランスとも呼ばれる。
変圧器と構造、動作原理はほぼ同じであるが、用途が異なるため電子部品として用いられるものをこの節で説明する。
[編集] 概要
トランスの1次側と2次側の巻数比に対して、電流比=巻数比、インピーダンス比=巻数比2の関係が成り立つ。
トランジスタなどの増幅回路に用いるトランスには、用途別に入力トランス、段間トランス、出力トランスの3種類がある。ただしこれらの分類はインピーダンスの公称値に対してメーカーが推奨する用途を定めたものであるため、耐電力などの条件を満たせば転用も可能である。トランジスタ用の小型トランスは山水電気のST-○○(2桁の数字)が定番と言えるもので、他社製のトランスもこれに準ずる型番を付けている製品が多い。
[編集] 種類
- 入力トランス
- 入力機器(マイクロホン、センサ)などと増幅回路のインピーダンス整合を行うトランスが入力トランスである。
- マイクロホンの入力の場合は、マイクロホンの出力端子の2本をアースから独立させて入力トランスの1次側に接続し、2次側をアンプの入力に接続する構造を採っている。2本の信号ラインに対して同相で混入した外部からのノイズ、ハムは入力トランスを通過しないので、長い配線を行っても高いS/N比が得られる。平衡接続参照。
- 段間トランス
- 増幅回路の出力と次段の入力のインピーダンス整合を行うトランス。B級プシュプル増幅回路などで、正負の2入力が必要な場合に、センタータップ付きのトランスが用いられる。IC、およびトランスを用いないSEPP回路などが主流になったため、近年はあまり見られない。
- 出力トランス
- スピーカーのインピーダンスは4~32Ω程度と極めて低いので、出力インピーダンスが高い真空管を用いた増幅回路、およびエミッタ接地回路によるトランジスタ増幅回路でスピーカーを駆動するには、1次側が数100Ω~数kΩ、2次側をスピーカーのインピーダンスに合わせた出力トランスを用いる。1次側の直流分(バイアス成分)を除く(2次側に現れないようにする。直流分カットと言うことがある。)ことにもなるので、負荷の保護の役割も兼ねる。
- 電流変成器(カレントトランス)
- 電流の測定において分流器を用いる場合、抵抗による熱損失などが問題となるため、大電流の交流や高周波を扱うには適切な方法ではない。そこで分流器の代わりにトランスが用いられる。
- 電力回路では計器用変流器 (CT) がこれに相当する。
- 伝送線路トランス
- 伝送線路の全体をコアに巻き、磁気回路を形成したものである。通常のトランスと動作原理は全く異なるが、トランスの一種として考えられる。伝送線路の2本の電線に対して同位相の電流は通過することができないので、電波障害の防止や平衡系-不平衡系の変換など様々な用途に用いられる。