Regula Falsi
De Regula Falsi-methode is een numeriek algoritme om de nulpunten van een functie te bepalen. Het algoritme convergeert trager dan de Newton-Raphson-methode, maar is stabieler.
[bewerk] Definitie
De opeenvolgende benaderingen xn worden gegeven door:
- ,
waarbij x0 en x1 twee initiële gokken zijn. Hierbij wordt echter verondersteld dat f(xn-1) .f(xn) < 0 is.
[bewerk] Meetkundige interpretatie
Gegeven een functie f(x) en twee waarden voor x, a en b (a < b), zodat f(a).f(b) < 0 (anders gezegd: de ene ligt boven de x-as, de andere eronder). Als we met een continue functie werken, zal de functie f in het interval ]a,b[ nul worden. We benaderen dit nulpunt, α, door de punten [a,f(a)] en [b,f(b)] met een rechte lijn te verbinden, en van die lijn het nulpunt te bepalen, volgens:
c is nu onze berekende benadering voor het nulpunt. We gebruiken deze om itererend naar een oplossing te zoeken. Daarvoor hebben we het teken nodig van f(c), en het punt a óf b, zodat f(a of b).f(c) opnieuw kleiner dan 0 is (beginvoorwaarde).
De animatie is niet volledig juist wanneer lijn tussen x3 en x4 wordt gelegd, f(x3) . f(x3) is namelijk gróter dan nul. De lijn moet eigenlijk tussen x2 en x4 getrokken worden.
[bewerk] Voorbeeld
....