Spektroskopia NMR
Z Wikipedii
Spektroskopia NMR, Spektroskopia Magnetycznego Rezonansu Jądrowego (ang. Nuclear Magnetic Resonance - potocznie w języku polskim: rezonans magnetyczny z pominięciem słowa "jądrowy", który większości ludzi może się źle kojarzyć, dlatego w medycynie zdecydowano się na krótszą nazwę oraz skrót MR, w chemii używa się pełnej nazwy) - jedna z najczęściej stosowanych obecnie technik spektroskopowych w chemii i medycynie.
Spektroskopia ta polega na wzbudzaniu spinów jądrowych znajdujących się w zewnętrznym polu magnetycznym poprzez szybkie zmiany pola magnetycznego, a następnie rejestrację promieniowania elektromagnetycznego powstającego na skutek zjawisk relaksacji, gdzie przez relaksację rozumiemy powrót układu spinów jądrowych do stanu równowagi termodynamicznej. NMR jest zatem jedną ze spektroskopii absorpcyjnych.
W biochemii wykorzystuje się metodę rezonansu jądrowo-magnetycznego - jest to metoda oznaczania zawartości wody i suchej substancji w produktach spożywczych. Wykorzystuje ona zjawisko pochłaniania energii pola elektromagnetycznego w zakresie fal radiowych przez jądra atomów wodoru (z wody) znajdujących się w badanym materiale. Metoda NMR jest jedną z dokładniejszych metod, dzięki której możemy otrzymać najwięcej powtarzających się wyników. Nadaje się ona do oznaczania zawartości wody w przedziale od 3 do 100%.
W medycynie technikę NMR stosuje się głównie w celu uzyskania obrazów tomograficznych. Stąd spotyka się również określenia tomografia rezonansu magnetycznego i skrótu MRI (ang. Magnetic Resonance Imaging) lub znacznie rzadziej MRT (ang. Magnetic Resonance Tomography)
[edytuj] Podstawy fizyczne
Niezerowy spin jądrowy posiadają praktycznie wszystkie atomy o nieparzystej liczbie nukleonów (np. wodór 1-H, węgiel 13-C, azot 15-N, tlen 17-O, fluor 19-F, sód 23-Na i fosfor 31-P). W bardzo dużym uproszczeniu spin jądrowy można sobie wyobrazić jako rotowanie jądra wokół własnej osi. Jest on związany z wewnętrznym momentem pędu jądra. Każde jądro jest obdarzone dodatnim ładunkiem elektrycznym, stąd jego spin generuje bardzo słabe pole magnetyczne i jest źródłem momentu magnetycznego μ.
Podstawą zjawiska NMR jest oddziaływanie spinów jądrowych z polami magnetycznymi:
- stałym polem magnetycznym , które jest wytwarzane magnesami (oś Z jest osią magnesu spektrometru, w literaturze często zamiast pisze się ),
- zmiennym polem magnetycznym , skierowanym prostopadle do osi Z (generowanym przez fale elektromagnetyczne w cewce spektrometru, w literaturze określane jest jako ),
- zmiennymi polami lokalnymi generowanymi przez sąsiednie jądra atomów oraz znajdujące się na nich chmury elektronowe.
W stałym polu magnetycznym , [spin jądrowy] (s = 1/2) posiada dwie możliwe orientacje odpowiadające energii potencjalnej jądrowego momentu magnetycznego μ w polu magnetycznym . Dla spinów połówkowych mamy dwa kierunki spinu względem pola: "w górę" lub "w dół". W mechanice kwantowej tym kierunkom odpowiadają dwa poziomy energetyczne, czyli dwa stany własne z-towej składowej operatora momentu pędu jądra . Stanom własnym energii odpowiadają tzw. populacje, opisane statystyką Boltzmanna. W temperaturach pokojowych, w stanie równowagi termodynamicznej istnieje tylko niewielka nadwyżka spinów (ok. 1 na 100 tys.) znajdujących się w stanie o niższej energii (zgodnie z polem ) i tylko te spiny możemy zaobserwować eksperymentalnie.
Dodatkowym zjawiskiem, bez którego zjawisko NMR nie miałoby miejsca, jest tzw. precesja Larmora, będąca ruchem wektora magnetyzacji dookoła pola magnetycznego. Precesja jest na ogół złożeniem wielu ruchów i często jest ona porównywana do ruchu bąka wytrąconego z równowagi. Fenomenologiczny opis ruchu wektora magnetyzacji opisany został w 1946 roku przez jednego z dwóch odkrywców NMR Felixa Blocha (równania Blocha).
U podstaw precesji Larmora w zewnętrznym polu leży fakt, że spin skierowany w kierunku płaszczyny XY (tj. niebędący w stanie podstawowym), obraca się dookoła osi Z. Mówimy, że taki spin skierowany w kierunku innym niż oś Z, jest w stanie superpozycji stanów własnych. Z mechaniki kwantowej wynika, że superpozycje stanów własnych są niestacjonarne, czego konsekwencją jest obrót spinu dookoła osi Z (cykliczne reguły komutacyjne i grupy obrotu).
Częstość obrotu spinu w stanie superpozycji jest proporcjonalna do tzw. współczynnika magnetogirycznego (giromagnetycznego) γ i indukcji stałego pola a częstość Larmora dana jest zależnością
Aby zmienić stan spinu, wprowadza się zmienne pole magnetyczne o częstości równej precesji Larmora i skierowane w kierunku osi X lub Y. Rezonans polega na tym, że z punktu widzenia spinu, tylko dla określonej częstości tego zmiennego pola "widzi" on dodatkowe statyczne pole, tzw. pole efektywne , dookoła którego również zaczyna się kręcić. Ze względu na fakt, że pole jest niezwykle słabe w stosunku do pola częstość precesji jest w zakresie kilku kHz.
W ten oto sposób można zmienić orientację spinu, a tym samym kierunek całej magnetyzacji. Rejestracja sygnału NMR polega na obróceniu magnetyzacji na płaszczyznę, w której znajduje się cewka odbiorcza (płaszczyzną detekcji jest płaszczyzna XY). Obracająca się w płaszczyźnie detekcji magnetyzacja indukuje w cewce prąd, który może być zarejestrowany przez aparaturę. Sygnały NMR są niezwykle słabe.
Historyczna już metoda NMR, tzw. metoda fali ciągłej (CW Continuous Wave), obserwowała jedynie absorpcję pola o częstościach radiowych, w tym celu płynnie zmieniano pole magnetyczne przy stałej częstotliwości pola radiowego (lub odwrotnie). Współczesne metody impulsowe stosują krótkie impulsy pola, nazywane potocznie radioimpulsami. Najczęściej stosuje się częstotliwości radiowe w zakresie od 16 MHz do 1 GHz. Dla protonów obecnych w izotopie 1H umieszczonych w polu magnetycznym B = 1 T radioimpuls ma częstotliwość ok. 40 MHz.
Najczęstsze radioimpulsy to π / 2 i π. Obracają one magnetyzację o kąty odpowiednio 90 i 180° w stosunku do osi Z. Radioimpuls 90° zamienia populacje w koherencje, ponieważ spiny znajdują się w płaszczyźnie XY. Radioimpuls 180° odwraca stosunek obsadzeń populacji, a spiny i magnetyzacja skierowane są w kierunku "-Z".
Cewka nadawczo-odbiorcza spektroskopu umożliwia rejestrację tzw. sygnału zaniku swobodnej precesji (ang. Free Induction Decay, FID), który niesie w sobie informację przede wszystkim o różnych częstościach precesji Larmora, które to uzyskuje się wprost z transformaty Fouriera sygnału zaniku swobodnej precesji.
Widmo sygnału FID niesie również informację o oddziaływaniach spinowych oraz o procesach relaksacji (pośrednio o dynamice molekularnej). Oddziaływania spinowe to przede wszystkim oddziaływania spinów jądrowych z dodatkowym polem magnetycznym, zmieniającym warunki rezonansowe w poszczególnych obszarach próbki. Dodatkowe pole, tzw. pole lokalne, wytworzone jest przez obsadzone orbitale elektronowe (przesunięcie chemiczne) oraz na skutek oddziaływań spinów z otoczeniem, którymi są sąsiadujące spiny. Stąd też duże znaczenie NMR w chemii. Do najważniejszych oddziaływań spinowych zaliczamy: pośrednie oddziaływanie spinów jądrowych poprzez wiązanie chemiczne (polaryzacja spinów elektronowych) tzw. oddziaływanie skalarne, oddziaływanie bezpośrednie oddziaływanie spin-spin i kilka innych, znacznie słabszych oddziaływań.
Sygnał FID (zaniku swobodnej precesji) zanika głównie na skutek procesów relaksacyjnych. Podstawowe procesy relaksacji to tzw. relaksacja typu spin-spin (relaksacja poprzeczna ze stałą czasową T2) oraz relaksacja typu spin-sieć (relaksacja podłużna ze stałą czasową T1). Za zanik magnetyzacji ze stałą czasową T2 odpowiadają w głównej mierze niejednorodności pola magnetycznego, procesy transportu oraz procesy wymiany chemicznej. Relaksacja T1 to powrót układu spinów do równowagi termodynamicznej, opisanej statystyką Boltzmanna.
Dzięki obrazowaniu MRI (ang. magnetic resonance imaging), NMR jest dzisiaj podstawową metodą diagnostyczną. Podstawą obrazowania jest wykorzystanie tzw. gradientów pola magnetycznego, które różnicują pole wewnątrz obrazowanego obiektu. Zróżnicowanie pola i radioimpulsy o odpowiednio dobranym widmie, pozwalają na spełnienie selektywnych warunków rezonansowych i rejestrację sygnału z wybranych fragmentów obiektu.
[edytuj] Przesunięcie chemiczne
W przypadku substancji składającej się wyłącznie z jednego rodzaju atomów - np. gazowego wodoru, generowane w warunkach eksperymentu NMR widmo promieniowania elektromagnetycznego składa się zazwyczaj z jednej ostrej linii, bo wszystkie jądra są jednakowe i znajdują się w tym samym polu magnetycznym.
W przypadku substancji składającej się z bardziej złożonych cząsteczek np. etanolu, różne atomy wodoru obecne w tej cząsteczce będą wysyłały promieniowanie elektromagnetyczne o nieco innej częstotliwości. Wynika to z efektu ekranowego elektronów znajdujących się wokół tych jąder. Elektrony są również w stałym ruchu i także są obdarzone ładunkiem elektrycznym, dlatego ich ruch generuje pole magnetyczne, o innej biegunowości niż zewnętrzne pole magnetyczne generowane przez aparat NMR.
W rezultacie jądra atomów znajdują się faktycznie w nieco innym polu, niż to generowane przez aparat NMR. Polu będącego wypadkową pola aparatu i pola generowanego przez elektrony. To wypadkowe pole jest różne dla każdego z jąder atomów tworzących daną cząsteczkę, bo wokół każdego z nich jest inny zbiór elektronów, wynikający z układu wiązań chemicznych. Powoduje to, że ten sam rodzaj jąder (np. wodoru), ale umieszczonych w innych miejscach cząsteczki, generuje w warunkach NMR promieniowanie elektromagnetyczne o nieco innej częstotliwości, i w rezultacie w widmie otrzymuje się zbiór ostrych sygnałów, których liczba odpowiada liczbie różnych chemicznie atomów występujących w danej cząsteczce.
Różnice częstotliwości sygnałów w widmie NMR, pochodzące od jednego rodzaju atomów (np. wodoru), wynikające z budowy chemicznej cząsteczek, nazywane są przesunięciem chemicznym. Przesunięcia te są stablicowane i umożliwiają ustalanie struktury chemicznej badanych cząsteczek na podstawie widm NMR.
[edytuj] Rodzaje widm NMR
- Widma jednowymiarowe w fazie ciekłej (patrz "dyskusja") - analizowana próbka musi być w postaci ciekłej (sama substancja może być ciekła lub stała, ale do analizy należy ją rozpuścić w rozpuszczalniku deuterowanym, tj. takim, w którym wszystkie lub możliwie wiele protonów zostało zastąpionych deuteronem). Zabieg ten wykonuje się z dwóch powodów. Pierwszy, to konieczność rozcieńczenia protonów przy wykonywaniu widm 1-H. Drugi, to wykorzystanie sygnału deuteru (deuteron też jest magnetycznie czynnym jądrem) do stabilizacji częstotliwości podstawowej spektrometru NMR.
Najczęściej rejestruje się widma wodoru 1-H, węgla 13-C i fosforu 31-P.
- Widma w fazie ciekłej, wielowymiarowe - analizowana substancja musi być rozpuszczona w rozpuszczalniku deuterowanym. Rejestruje się jednocześnie widma pochodzące od dwóch lub więcej rodzajów atomów, co umożliwia obserwację interferencji i sprzężeń między widmami generowanymi przez różne atomy w cząsteczce.
- Widma w fazie stałej - analizowana substancja jest ciałem stałym - ze względu na to, że w ciele stałym praktycznie każdy atom jest w nieco innym otoczeniu chemicznym, umożliwia ona np. obserwację sposobu uporządkowania kryształów. Jest to technika trudna, wymagająca "tricków" z wycinaniem szumu z widm.
Podstawową techniką rejestracji widm w fazie stałej jest technika CP-MAS (ang. Cross Polarization Magic Angle Spinning). W technice tej wykorzystuje się zjawisko cross-polaryzacji, czyli "przeniesienia" polaryzacji z jądra protonu (bardzo czuły) na mniej czułe jądra, np.: 13-C, 14-N, 29-Si. Zatem wykorzystanie tego zjawiska podnosi w znacznym stopniu czułość pomiaru. Aby otrzymane widma miały dobrą rozdzielczość, wykorzystuje się wirowanie próbki pod kątem 54°44,1', tzw. kątem magicznym (ang. magic angle) (w stosunku do pola magnetycznego B0). Sproszkowana, krystaliczna, amorficzna próbka jest ustawiona pod "magicznym kątem" do pola magnetycznego i obracana z szybkością ponad 5 kHz. Metoda ta jest stosowana również w rezonansie 13C zwanej jako 13C.CP.MAS (Cross-Polarization Magic Angle Spinning). Spektroskopia 1H NMR stanu stałego jest metodą trudniejszą niż 13C z powodu większej ilości izotopów wodoru, które dają więcej protonowych, homojądrowych, dipolarnych wzajemnych oddziaływań. Problem ten również został rozwiązany poprzez metodę zwaną CRAMPS (Combined Rotational and Multiple Pulse Microscopy). Podobne rezultaty uzyskano poprzez redukcję liczby protonów przez podstawienie deuterem zwane spinowym rozcieńczeniem deuterowym (Deuterium Spin Dilution), która jest również kombinacją z metodą „Magic Angle Spinning”. Obecnie możliwe są pomiary przy prędkości wirowania próbki wynoszącej nawet 35 kHz. Takie widma w fazie stałej są już bardzo podobne do widm uzyskanych w fazie ciekłej.
Przykład widma 1H NMR, wykonanego w aparacie Bruker DRX500, w CBMiM PAN, w cieczy
(Trietoksy-1-oktylosilan zanieczyszczony toluenem i izomerami oktenu)