ebooksgratis.com

Project Gutenberg

Contents Listing Alphabetical by Author:
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z Unknown Other
Contents Listing Alphabetical by Title:
# A B C D E F G H I J K L M N O P Q R S T U V W Y Z Other

Amazon - Audible - Barnes and Noble - Everand - Kobo - Storytel 

See also ebooksgratis.com: no banners, no cookies, totally FREE.

CLASSICISTRANIERI HOME PAGE - YOUTUBE CHANNEL
Privacy Policy Cookie Policy Terms and Conditions
Lei dos senos - Wikipédia, a enciclopédia livre

Lei dos senos

Origem: Wikipédia, a enciclopédia livre.

[editar] Fórmula

Em trigonometria, a lei dos senos é uma relação matemática de proporção sobre a medida de triângulos arbitrários em um plano. Em um triângulo ABC qualquer, inscrito em uma circunferência de raio r, de lados BC, AC e AB que medem respectivamente a, b e c e com ângulos internos \widehat{A}, \widehat{B} e \widehat{C} vale a seguinte relação:

 \frac{a}{\sin \widehat{A}} = \frac{b}{\sin \widehat{B}} = \frac{c}{\sin \widehat{C}} = 2r \,\!

[editar] Demonstração

Para demonstrar a lei dos senos, tomamos um triângulo ABC qualquer inscrito em uma circunferência de raio r. A partir do ponto B pode-se encontrar um ponto diametralmente oposto D, e, ligando D a C, formamos um novo triângulo BCD retângulo em C.

Da figura, podemos perceber também que  \widehat{A} = \widehat{D}\,\!, porque determinam na circunferência uma mesma corda  \overline{BC} \,\!. Desta forma, podemos relacionar:


 \sin \widehat{D} = \frac{a}{2r}  \Rightarrow a = 2R \cdot \sin \widehat{A}  \Rightarrow \frac{a}{\sin \widehat{A}} = 2r


Fazendo todo este mesmo processo para os ângulos  \widehat{B} \,\! e  \widehat{C} \,\! teremos as relações:

\frac{b}{\sin \widehat{B}} e  \frac{c}{\sin \widehat{C}} = 2r , em que b é a medida do lado AC, oposto a  \widehat{B} \,\!, c é a medida do lado AB, oposto a  \widehat{C} \,\!, e 2r é uma constante.

Logo, podemos concluir que:

\frac{a}{\sin \widehat{A}}=\frac{b}{\sin \widehat{B}} = \frac{c}{\sin \widehat{C}} = 2r \,\!


Outro modo de demonstrar é usando geometria analítica com vetores: Definimos um triângulo formado pela soma \vec{b}+\vec{c} e o resultante \vec{a} e os ângulos \widehat{C},\widehat{B} e \widehat{A} correspondendo respectivamente aos vetores \vec{a} e \vec{b}, \vec{a} e \vec{c}, \vec{b} e \vec{c}. Sabendo que o dobro da área, representada por S, do triângulo formado entre os vetores \vec{u} e \vec{v} é calculada com o módulo do produto vetorial entre eles e que \|\vec{u}\times\vec{v}\|=\|\vec{u}\|\cdot\|\vec{v}\|\cdot \sin(\theta), sendo θ o ângulo entre os vetores \vec{u} e \vec{v}, dessa forma temos o seguinte desenvolvimento:

\|\vec{a}\times\vec{b}\|=\|\vec{a}\times\vec{c}\|=\|\vec{b}\times\vec{c}\|=2S


\|\vec{a}\|\cdot\|\vec{b}\|\cdot \sin\widehat{C}=\|\vec{a}\|\cdot\|\vec{c}\|\cdot \sin\widehat{B}=\|\vec{b}\|\cdot\|\vec{c}\|\cdot \sin\widehat{A}=2S


\frac{\|\vec{a}\|\cdot\|\vec{b}\|\cdot \sin\widehat{C}}{\|\vec{a}\|\cdot\|\vec{b}\|\cdot\|\vec{c}\|}=\frac{\|\vec{a}\|\cdot\|\vec{c}\|\cdot \sin\widehat{B}}{\|\vec{a}\|\cdot\|\vec{b}\|\cdot\|\vec{c}\|}=\frac{\|\vec{b}\|\cdot\|\vec{c}\|\cdot \sin\widehat{A}}{\|\vec{a}\|\cdot\|\vec{b}\|\cdot\|\vec{c}\|}=\frac{2S}{\|\vec{a}\|\cdot\|\vec{b}\|\cdot\|\vec{c}\|}


\frac{\sin\widehat{C}}{\|\vec{c}\|}=\frac{\sin\widehat{B}}{\|\vec{b}\|}=\frac{\sin\widehat{A}}{\|\vec{a}\|}=\frac{1}{2r}

Que pode ser representado como a lei dos senos que conhecemos:

\frac{a}{\sin \widehat{A}}=\frac{b}{\sin \widehat{B}} = \frac{c}{\sin \widehat{C}}=2r

Pois é uma relação possível de se inverter.

[editar] Trigonometria esférica

Ver artigo principal: Trigonometria esférica
Lei dos senos para um triângulo esférico
Lei dos senos para um triângulo esférico

Em um triângulo esférico existe uma lei muito parecida:

\frac{\sin a}{\sin A} = \frac{\sin b}{\sin B} = \frac{\sin c}{\sin C}\,

A lei dos senos na trigonometria plana é o caso limite desta lei; o triângulo plano é o limite de um triângulo esférico quando os lados tendem a zero, e, no limite, \sin x \to x\,.


Trigonometria

História
Utilidade
Funções
Funções inversas
Aprofundamento

Referência

Lista de identidades
Constantes exatas
Geração de tabelas trigonométricas
CORDIC

Teoria euclidiana

Lei dos senos
Lei dos cossenos
Lei das tangentes
Teorema de Pitágoras

Cálculo

A Integral trigonométrica
Substituição trigonométrica
Integrais de funções
Integrais de inversas

Static Wikipedia (no images) - November 2006

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - be - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - closed_zh_tw - co - cr - cs - csb - cu - cv - cy - da - de - diq - dv - dz - ee - el - eml - en - eo - es - et - eu - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gd - gl - glk - gn - got - gu - gv - ha - haw - he - hi - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mg - mh - mi - mk - ml - mn - mo - mr - ms - mt - mus - my - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - rm - rmy - rn - ro - roa_rup - roa_tara - ru - ru_sib - rw - sa - sc - scn - sco - sd - se - searchcom - sg - sh - si - simple - sk - sl - sm - sn - so - sq - sr - ss - st - su - sv - sw - ta - te - test - tet - tg - th - ti - tk - tl - tlh - tn - to - tokipona - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu